Skip to content
Snippets Groups Projects
Commit d616cd18 authored by Maja Jablonska's avatar Maja Jablonska
Browse files

Remove an old commented segment

parent 92da07ee
1 merge request!46Merge COMBO 3.0 into master
......@@ -24,6 +24,7 @@ from combo.data.dataset_readers.dataset_reader import DatasetReader
from combo.data.instance import JsonDict, Instance
from combo.modules.model import Model
from combo.nn import utils
from combo.nn.utils import move_to_device
logger = logging.getLogger(__name__)
......@@ -135,7 +136,7 @@ class PredictorModule(pl.LightningModule, FromParameters):
dataset = Batch(instances)
dataset.index_instances(self._model.vocab)
dataset_tensor_dict = util.move_to_device(dataset.as_tensor_dict(), self.cuda_device)
dataset_tensor_dict = move_to_device(dataset.as_tensor_dict(), self.cuda_device)
# To bypass "RuntimeError: cudnn RNN backward can only be called in training mode"
with backends.cudnn.flags(enabled=False):
outputs = self._model.make_output_human_readable(
......@@ -331,96 +332,3 @@ class PredictorModule(pl.LightningModule, FromParameters):
for json_dict in json_dicts:
instances.append(self._json_to_instance(json_dict))
return instances
#
# @classmethod
# def from_path(
# cls,
# archive_path: Union[str, Path],
# predictor_name: str = None,
# cuda_device: int = -1,
# dataset_reader_to_load: str = "validation",
# frozen: bool = True,
# import_plugins: bool = True,
# overrides: Union[str, Dict[str, Any]] = "",
# ) -> "Predictor":
# """
# Instantiate a `Predictor` from an archive path.
#
# If you need more detailed configuration options, such as overrides,
# please use `from_archive`.
#
# # Parameters
#
# archive_path : `Union[str, Path]`
# The path to the archive.
# predictor_name : `str`, optional (default=`None`)
# Name that the predictor is registered as, or None to use the
# predictor associated with the model.
# cuda_device : `int`, optional (default=`-1`)
# If `cuda_device` is >= 0, the model will be loaded onto the
# corresponding GPU. Otherwise it will be loaded onto the CPU.
# dataset_reader_to_load : `str`, optional (default=`"validation"`)
# Which dataset reader to load from the archive, either "train" or
# "validation".
# frozen : `bool`, optional (default=`True`)
# If we should call `model.eval()` when building the predictor.
# import_plugins : `bool`, optional (default=`True`)
# If `True`, we attempt to import plugins before loading the predictor.
# This comes with additional overhead, but means you don't need to explicitly
# import the modules that your predictor depends on as long as those modules
# can be found by `allennlp.common.plugins.import_plugins()`.
# overrides : `Union[str, Dict[str, Any]]`, optional (default = `""`)
# JSON overrides to apply to the unarchived `Params` object.
#
# # Returns
#
# `Predictor`
# A Predictor instance.
# """
# if import_plugins:
# plugins.import_plugins()
# return Predictor.from_archive(
# load_archive(archive_path, cuda_device=cuda_device, overrides=overrides),
# predictor_name,
# dataset_reader_to_load=dataset_reader_to_load,
# frozen=frozen,
# )
#
# @classmethod
# def from_archive(
# cls,
# archive: Archive,
# predictor_name: str = None,
# dataset_reader_to_load: str = "validation",
# frozen: bool = True,
# ) -> "Predictor":
# """
# Instantiate a `Predictor` from an [`Archive`](../models/archival.md);
# that is, from the result of training a model. Optionally specify which `Predictor`
# subclass; otherwise, we try to find a corresponding predictor in `DEFAULT_PREDICTORS`, or if
# one is not found, the base class (i.e. `Predictor`) will be used. Optionally specify
# which [`DatasetReader`](../data/dataset_readers/dataset_reader.md) should be loaded;
# otherwise, the validation one will be used if it exists followed by the training dataset reader.
# Optionally specify if the loaded model should be frozen, meaning `model.eval()` will be called.
# """
# # Duplicate the config so that the config inside the archive doesn't get consumed
# config = archive.config.duplicate()
#
# if not predictor_name:
# model_type = config.get("model").get("type")
# model_class, _ = Model.resolve_class_name(model_type)
# predictor_name = model_class.default_predictor
# predictor_class: Type[Predictor] = (
# Predictor.by_name(predictor_name) if predictor_name is not None else cls # type: ignore
# )
#
# if dataset_reader_to_load == "validation":
# dataset_reader = archive.validation_dataset_reader
# else:
# dataset_reader = archive.dataset_reader
#
# model = archive.model
# if frozen:
# model.eval()
#
# return predictor_class(model, dataset_reader)
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment