Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
combo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Redmine
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Syntactic Tools
combo
Commits
2b3c13dc
Commit
2b3c13dc
authored
Apr 6, 2023
by
Maja Jabłońska
Committed by
Martyna Wiącek
Jun 20, 2023
Browse files
Options
Downloads
Patches
Plain Diff
Add LemmatizerModel from COMBO
parent
ea4d3c46
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!46
Merge COMBO 3.0 into master
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
combo/models/lemma.py
+104
-2
104 additions, 2 deletions
combo/models/lemma.py
with
104 additions
and
2 deletions
combo/models/lemma.py
+
104
−
2
View file @
2b3c13dc
from
combo.models.base
import
Predictor
from
typing
import
Optional
,
Dict
,
List
,
Union
import
torch
import
torch.nn
as
nn
from
combo
import
data
from
combo.models
import
dilated_cnn
,
base
,
utils
from
combo.models.base
import
Predictor
,
TimeDistributed
from
combo.models.combo_nn
import
Activation
from
combo.utils
import
ConfigurationError
class
LemmatizerModel
(
Predictor
):
class
LemmatizerModel
(
Predictor
):
pass
"""
Lemmatizer model.
"""
def
__init__
(
self
,
num_embeddings
:
int
,
embedding_dim
:
int
,
dilated_cnn_encoder
:
dilated_cnn
.
DilatedCnnEncoder
,
input_projection_layer
:
base
.
Linear
):
super
().
__init__
()
self
.
char_embed
=
nn
.
Embedding
(
num_embeddings
=
num_embeddings
,
embedding_dim
=
embedding_dim
,
)
self
.
dilated_cnn_encoder
=
TimeDistributed
(
dilated_cnn_encoder
)
self
.
input_projection_layer
=
input_projection_layer
def
forward
(
self
,
x
:
Union
[
torch
.
Tensor
,
List
[
torch
.
Tensor
]],
mask
:
Optional
[
torch
.
BoolTensor
]
=
None
,
labels
:
Optional
[
Union
[
torch
.
Tensor
,
List
[
torch
.
Tensor
]]]
=
None
,
sample_weights
:
Optional
[
Union
[
torch
.
Tensor
,
List
[
torch
.
Tensor
]]]
=
None
)
->
Dict
[
str
,
torch
.
Tensor
]:
encoder_emb
,
chars
=
x
encoder_emb
=
self
.
input_projection_layer
(
encoder_emb
)
char_embeddings
=
self
.
char_embed
(
chars
)
BATCH_SIZE
,
_
,
MAX_WORD_LENGTH
,
CHAR_EMB
=
char_embeddings
.
size
()
encoder_emb
=
encoder_emb
.
unsqueeze
(
2
).
repeat
(
1
,
1
,
MAX_WORD_LENGTH
,
1
)
x
=
torch
.
cat
((
char_embeddings
,
encoder_emb
),
dim
=-
1
).
transpose
(
2
,
3
)
x
=
self
.
dilated_cnn_encoder
(
x
).
transpose
(
2
,
3
)
output
=
{
"
prediction
"
:
x
.
argmax
(
-
1
),
"
probability
"
:
x
}
if
labels
is
not
None
:
if
mask
is
None
:
mask
=
encoder_emb
.
new_ones
(
encoder_emb
.
size
()[:
-
2
])
if
sample_weights
is
None
:
sample_weights
=
labels
.
new_ones
(
BATCH_SIZE
)
mask
=
mask
.
unsqueeze
(
2
).
repeat
(
1
,
1
,
MAX_WORD_LENGTH
).
bool
()
output
[
"
loss
"
]
=
self
.
_loss
(
x
,
labels
,
mask
,
sample_weights
)
return
output
@staticmethod
def
_loss
(
pred
:
torch
.
Tensor
,
true
:
torch
.
Tensor
,
mask
:
torch
.
BoolTensor
,
sample_weights
:
torch
.
Tensor
)
->
torch
.
Tensor
:
BATCH_SIZE
,
SENTENCE_LENGTH
,
MAX_WORD_LENGTH
,
CHAR_CLASSES
=
pred
.
size
()
pred
=
pred
.
reshape
(
-
1
,
CHAR_CLASSES
)
true
=
true
.
reshape
(
-
1
)
mask
=
true
.
gt
(
0
)
loss
=
utils
.
masked_cross_entropy
(
pred
,
true
,
mask
)
loss
=
loss
.
reshape
(
BATCH_SIZE
,
-
1
)
*
sample_weights
.
unsqueeze
(
-
1
)
valid_positions
=
mask
.
sum
()
return
loss
.
sum
()
/
valid_positions
@classmethod
def
from_vocab
(
cls
,
vocab
:
data
.
Vocabulary
,
char_vocab_namespace
:
str
,
lemma_vocab_namespace
:
str
,
embedding_dim
:
int
,
input_projection_layer
:
base
.
Linear
,
filters
:
List
[
int
],
kernel_size
:
List
[
int
],
stride
:
List
[
int
],
padding
:
List
[
int
],
dilation
:
List
[
int
],
activations
:
List
[
Activation
],
):
assert
char_vocab_namespace
in
vocab
.
get_namespaces
()
assert
lemma_vocab_namespace
in
vocab
.
get_namespaces
()
if
len
(
filters
)
+
1
!=
len
(
kernel_size
):
raise
ConfigurationError
(
f
"
len(filters) (
{
len
(
filters
)
:
d
}
) + 1 != kernel_size (
{
len
(
kernel_size
)
:
d
}
)
"
)
filters
=
filters
+
[
vocab
.
get_vocab_size
(
lemma_vocab_namespace
)]
dilated_cnn_encoder
=
dilated_cnn
.
DilatedCnnEncoder
(
input_dim
=
embedding_dim
+
input_projection_layer
.
get_output_dim
(),
filters
=
filters
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
dilation
=
dilation
,
activations
=
activations
,
)
return
cls
(
num_embeddings
=
vocab
.
get_vocab_size
(
char_vocab_namespace
),
embedding_dim
=
embedding_dim
,
dilated_cnn_encoder
=
dilated_cnn_encoder
,
input_projection_layer
=
input_projection_layer
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment