Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
combo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Redmine
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Syntactic Tools
combo
Commits
2aa41eba
Commit
2aa41eba
authored
Jan 6, 2021
by
Mateusz Klimaszewski
Browse files
Options
Downloads
Patches
Plain Diff
Remove lemma padding from lemma loss and metric.
parent
c0835180
Branches
Branches containing commit
Tags
Tags containing commit
2 merge requests
!15
Merge develop to master
,
!14
Install and docs
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
combo/models/lemma.py
+2
-2
2 additions, 2 deletions
combo/models/lemma.py
combo/utils/metrics.py
+61
-1
61 additions, 1 deletion
combo/utils/metrics.py
tests/utils/test_metrics.py
+55
-0
55 additions, 0 deletions
tests/utils/test_metrics.py
with
118 additions
and
3 deletions
combo/models/lemma.py
+
2
−
2
View file @
2aa41eba
...
...
@@ -62,11 +62,11 @@ class LemmatizerModel(base.Predictor):
BATCH_SIZE
,
SENTENCE_LENGTH
,
MAX_WORD_LENGTH
,
CHAR_CLASSES
=
pred
.
size
()
pred
=
pred
.
reshape
(
-
1
,
CHAR_CLASSES
)
valid_positions
=
mask
.
sum
()
mask
=
mask
.
reshape
(
-
1
)
true
=
true
.
reshape
(
-
1
)
mask
=
true
.
gt
(
0
)
loss
=
utils
.
masked_cross_entropy
(
pred
,
true
,
mask
)
loss
=
loss
.
reshape
(
BATCH_SIZE
,
-
1
)
*
sample_weights
.
unsqueeze
(
-
1
)
valid_positions
=
mask
.
sum
()
return
loss
.
sum
()
/
valid_positions
@classmethod
...
...
This diff is collapsed.
Click to expand it.
combo/utils/metrics.py
+
61
−
1
View file @
2aa41eba
...
...
@@ -6,6 +6,66 @@ from allennlp.training import metrics
from
overrides
import
overrides
class
LemmaAccuracy
(
metrics
.
Metric
):
def
__init__
(
self
):
self
.
_correct_count
=
0.0
self
.
_total_count
=
0.0
self
.
correct_indices
=
torch
.
ones
([])
@overrides
def
__call__
(
self
,
predictions
:
torch
.
Tensor
,
gold_labels
:
torch
.
Tensor
,
mask
:
Optional
[
torch
.
BoolTensor
]
=
None
):
if
gold_labels
is
None
:
return
predictions
,
gold_labels
,
mask
=
self
.
detach_tensors
(
predictions
,
gold_labels
,
mask
)
# Some sanity checks.
if
gold_labels
.
size
()
!=
predictions
.
size
():
raise
ValueError
(
f
"
gold_labels must have shape == predictions.size() but
"
f
"
found tensor of shape:
{
gold_labels
.
size
()
}
"
)
if
mask
is
not
None
and
mask
.
size
()
not
in
[
predictions
.
size
()[:
-
1
],
predictions
.
size
()]:
raise
ValueError
(
f
"
mask must have shape in one of [predictions.size()[:-1], predictions.size()] but
"
f
"
found tensor of shape:
{
mask
.
size
()
}
"
)
if
mask
is
None
:
mask
=
predictions
.
new_ones
(
predictions
.
size
()[:
-
1
]).
bool
()
if
mask
.
dim
()
<
predictions
.
dim
():
mask
=
mask
.
unsqueeze
(
-
1
)
padding_mask
=
gold_labels
.
gt
(
0
)
correct
=
predictions
.
eq
(
gold_labels
)
*
padding_mask
correct
=
(
correct
.
int
().
sum
(
-
1
)
==
padding_mask
.
int
().
sum
(
-
1
))
*
mask
.
squeeze
(
-
1
)
correct
=
correct
.
float
()
self
.
correct_indices
=
correct
.
flatten
().
bool
()
self
.
_correct_count
+=
correct
.
sum
()
self
.
_total_count
+=
mask
.
sum
()
@overrides
def
get_metric
(
self
,
reset
:
bool
)
->
float
:
if
self
.
_total_count
>
0
:
accuracy
=
float
(
self
.
_correct_count
)
/
float
(
self
.
_total_count
)
else
:
accuracy
=
0.0
if
reset
:
self
.
reset
()
return
accuracy
@overrides
def
reset
(
self
)
->
None
:
self
.
_correct_count
=
0.0
self
.
_total_count
=
0.0
self
.
correct_indices
=
torch
.
ones
([])
class
SequenceBoolAccuracy
(
metrics
.
Metric
):
"""
BoolAccuracy implementation to handle sequences.
"""
...
...
@@ -202,7 +262,7 @@ class SemanticMetrics(metrics.Metric):
self
.
xpos_score
=
SequenceBoolAccuracy
()
self
.
semrel_score
=
SequenceBoolAccuracy
()
self
.
feats_score
=
SequenceBoolAccuracy
(
prod_last_dim
=
True
)
self
.
lemma_score
=
SequenceBoolAccuracy
(
prod_last_dim
=
True
)
self
.
lemma_score
=
LemmaAccuracy
(
)
self
.
attachment_scores
=
AttachmentScores
()
# Ignore PADDING and OOV
self
.
enhanced_attachment_scores
=
AttachmentScores
(
ignore_classes
=
[
0
,
1
])
...
...
This diff is collapsed.
Click to expand it.
tests/utils/test_metrics.py
+
55
−
0
View file @
2aa41eba
...
...
@@ -154,3 +154,58 @@ class SequenceBoolAccuracyTest(unittest.TestCase):
# then
self
.
assertEqual
(
metric
.
_correct_count
.
item
(),
7
)
self
.
assertEqual
(
metric
.
_total_count
.
item
(),
10
)
class
LemmaAccuracyTest
(
unittest
.
TestCase
):
def
setUp
(
self
)
->
None
:
self
.
mask
:
torch
.
BoolTensor
=
torch
.
tensor
([
[
True
,
True
,
True
,
True
],
[
True
,
True
,
True
,
False
],
])
def
test_prediction_has_error_in_not_padded_place
(
self
):
# given
metric
=
metrics
.
LemmaAccuracy
()
predictions
=
torch
.
tensor
([
[[
1
,
1
,
1
],
[
1
,
1
,
1
],
[
2
,
2
,
0
],
[
1
,
1
,
4
],
],
[[
1
,
1
,
0
],
[
1
,
1000
,
0
],
[
1
,
1
,
0
],
[
1
,
1
,
0
],
],
])
gold_labels
=
torch
.
tensor
([
[[
1
,
1
,
1
],
[
1
,
1
,
1
],
[
2
,
2
,
0
],
[
1
,
1
,
4
],
],
[[
1
,
1
,
0
],
[
1
,
1
,
0
],
[
1
,
1
,
0
],
[
1
,
1
,
0
],
],
])
expected_correct_count
=
6
expected_total_count
=
7
expected_correct_indices
=
torch
.
tensor
([
1
,
1
,
1
,
1
,
1
,
0
,
1
,
0
])
# when
metric
(
predictions
,
gold_labels
,
self
.
mask
)
# then
self
.
assertEqual
(
metric
.
_correct_count
.
item
(),
expected_correct_count
)
self
.
assertEqual
(
metric
.
_total_count
.
item
(),
expected_total_count
)
self
.
assertTrue
(
torch
.
all
(
expected_correct_indices
.
eq
(
metric
.
correct_indices
)))
def
test_prediction_wrong_prediction_in_padding_should_be_ignored
(
self
):
# given
metric
=
metrics
.
LemmaAccuracy
()
predictions
=
torch
.
tensor
([
[[
1
,
1
,
1
],
[
1
,
1
,
1
],
[
2
,
2
,
0
],
[
1
,
1
,
4
],
],
[[
1
,
1
,
1000
],
[
1
,
1
,
0
],
[
1
,
1
,
0
],
[
1
,
1
,
0
],
],
])
gold_labels
=
torch
.
tensor
([
[[
1
,
1
,
1
],
[
1
,
1
,
1
],
[
2
,
2
,
0
],
[
1
,
1
,
4
],
],
[[
1
,
1
,
0
],
[
1
,
1
,
0
],
[
1
,
1
,
0
],
[
1
,
1
,
0
],
],
])
expected_correct_count
=
7
expected_total_count
=
7
expected_correct_indices
=
torch
.
tensor
([
1
,
1
,
1
,
1
,
1
,
1
,
1
,
0
])
# when
metric
(
predictions
,
gold_labels
,
self
.
mask
)
# then
self
.
assertEqual
(
expected_correct_count
,
metric
.
_correct_count
.
item
())
self
.
assertEqual
(
expected_total_count
,
metric
.
_total_count
.
item
())
self
.
assertTrue
(
torch
.
all
(
expected_correct_indices
.
eq
(
metric
.
correct_indices
)))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment