Skip to content
Snippets Groups Projects

Training

Basic command:

combo --mode train \
      --training_data_path your_training_path \
      --validation_data_path your_validation_path

Options:

combo --helpfull

Examples (for clarity without training/validation data paths):

  • train on gpu 0

    combo --mode train --cuda_device 0
  • use pretrained embeddings:

    combo --mode train --pretrained_tokens your_pretrained_embeddings_path --embedding_dim your_embeddings_dim
  • use pretrained transformer embeddings:

    combo --mode train --pretrained_transformer_name your_choosen_pretrained_transformer
  • train only a dependency parser:

    combo --mode train --targets head,deprel
  • use additional features (e.g. part-of-speech tags) for training a dependency parser (token and char are default features)

    combo --mode train --targets head,deprel --features token,char,upostag

Enhanced Dependencies

Enhanced Dependencies are described here. Training an enhanced graph prediction model requires data pre-processing.

Data pre-processing

The organisers of IWPT20 shared task distributed the data sets and a data pre-processing script enhanced_collapse_empty_nodes.pl. If you wish to train a model on IWPT20 data, apply this script to the training and validation data sets, before training the COMBO EUD model.

perl enhanced_collapse_empty_nodes.pl training.conllu > training.fixed.conllu

Training EUD model

combo --mode train \
      --training_data_path your_preprocessed_training_path \
      --validation_data_path your_preprocessed_validation_path \
      --targets feats,upostag,xpostag,head,deprel,lemma,deps \
      --config_path config.graph.template.jsonnet

Configuration

Advanced

Config template config.template.jsonnet is formed in allennlp format so you can freely modify it. There is configuration for all the training/model parameters (learning rates, epochs number etc.). Some of them use jsonnet syntax to get values from configuration flags, however most of them can be modified directly there.