Skip to content
Snippets Groups Projects
call_experiment_stats.py 3.99 KiB
Newer Older
Marcin Wątroba's avatar
Marcin Wątroba committed
from new_experiment.new_dependency_provider import get_experiment_repository
Marcin Wątroba's avatar
Marcin Wątroba committed
from new_experiment.utils.get_spacy_model_name import get_spacy_model_name
from new_experiment.utils.property_helper import PropertyHelper
Marcin Wątroba's avatar
Marcin Wątroba committed


def get_stats_for(dataset_name: str, property_name: str) -> float:
    repo = get_experiment_repository(dataset_name)
Marcin Wątroba's avatar
Marcin Wątroba committed
    all_vals = repo.get_all_values_from_property(property_name)
    vals = [all_vals[record_id] for record_id in all_vals.keys()]
    vals = [ittt for ittt in vals if isinstance(ittt, float) and 10 > ittt > -2]
Marcin Wątroba's avatar
Marcin Wątroba committed
    if len(vals) == 0:
        ret = -1
    else:
        ret = sum(vals) / len(vals)
    print(dataset_name, property_name, ret)
Marcin Wątroba's avatar
Marcin Wątroba committed
    return ret
Marcin Wątroba's avatar
Marcin Wątroba committed


def get_stats_for_classic_wer(dataset_name: str, property_name: str) -> float:
    repo = get_experiment_repository(dataset_name)
Marcin Wątroba's avatar
Marcin Wątroba committed
    all_vals = repo.get_all_values_from_property(property_name)
    vals = [all_vals[record_id] for record_id in all_vals.keys()]
    vals = [ittt['classic_wer'] for ittt in vals if 'classic_wer' in ittt]
    vals = [ittt for ittt in vals if isinstance(ittt, float) and 10 > ittt > -2]
Marcin Wątroba's avatar
Marcin Wątroba committed
    if len(vals) == 0:
        ret = -1
    else:
        ret = sum(vals) / len(vals)
    print(dataset_name, property_name, ret)
Marcin Wątroba's avatar
Marcin Wątroba committed
    return ret
Marcin Wątroba's avatar
Marcin Wątroba committed


def get_stats_for_soft_wer(dataset_name: str, property_name: str) -> float:
    repo = get_experiment_repository(dataset_name)
Marcin Wątroba's avatar
Marcin Wątroba committed
    all_vals = repo.get_all_values_from_property(property_name)
    vals = [all_vals[record_id] for record_id in all_vals.keys()]
    vals = [ittt['soft_wer'] for ittt in vals if 'soft_wer' in ittt]
    vals = [ittt for ittt in vals if isinstance(ittt, float) and 10 > ittt > -2]
Marcin Wątroba's avatar
Marcin Wątroba committed
    if len(vals) == 0:
        ret = -1
    else:
        ret = sum(vals) / len(vals)
Marcin Wątroba's avatar
Marcin Wątroba committed
    print(dataset_name, property_name + '_soft', ret)
    return ret
Marcin Wątroba's avatar
Marcin Wątroba committed


def get_stats_for_embedding_wer(dataset_name: str, property_name: str) -> float:
    repo = get_experiment_repository(dataset_name)
    vals = [repo.get_property_for_key(it, property_name) for it in repo.get_all_record_ids_for_property(property_name)]
    vals = [it['embedding_wer'] for it in vals if 'embedding_wer' in it]
Marcin Wątroba's avatar
Marcin Wątroba committed
    vals = [ittt for ittt in vals if isinstance(ittt, float)]
    if len(vals) == 0:
        ret = -1
    else:
        ret = sum(vals) / len(vals)
    print(dataset_name, property_name + '_emb', ret)
    return ret
Marcin Wątroba's avatar
Marcin Wątroba committed


if __name__ == '__main__':
    COMMANDS = ['run_word_wer_classic_pipeline', 'run_word_wer_embedding_pipeline', 'run_spacy_dep_tag_wer_pipeline',
                'run_spacy_ner_wer_pipeline', 'run_spacy_pos_wer_pipeline']
    LANGUAGES = ['nl', 'fr', 'de', 'it', 'pl', 'es', 'en']
    WHISPER_ASR_MODEL = ['tiny', 'base', 'small', 'medium', 'large-v2']
    DATASETS = ['google_fleurs', 'minds14', 'voxpopuli']
    FULL_DATASET_NAMES = []
    for itt in LANGUAGES:
        for it in DATASETS:
            FULL_DATASET_NAMES.append(f'{itt}_{it}')

    FULL_LANGUAGE_MODELS = [f'whisper_{it}' for it in WHISPER_ASR_MODEL]

    for dataset in FULL_DATASET_NAMES:
        for model in FULL_LANGUAGE_MODELS:
            get_stats_for(dataset, PropertyHelper.ner_metrics(model, get_spacy_model_name(dataset[:2])))

    for dataset in FULL_DATASET_NAMES:
        for model in FULL_LANGUAGE_MODELS:
            get_stats_for(dataset, PropertyHelper.pos_metrics(model, get_spacy_model_name(dataset[:2])))

    for dataset in FULL_DATASET_NAMES:
        for model in FULL_LANGUAGE_MODELS:
            get_stats_for(dataset, PropertyHelper.dep_tag_metrics(model, get_spacy_model_name(dataset[:2])))

    for dataset in FULL_DATASET_NAMES:
        for model in FULL_LANGUAGE_MODELS:
            get_stats_for_classic_wer(dataset, PropertyHelper.word_wer_classic_metrics(model))

    for dataset in FULL_DATASET_NAMES:
        for model in FULL_LANGUAGE_MODELS:
            get_stats_for_soft_wer(dataset, PropertyHelper.word_wer_embeddings_metrics(model))

    for dataset in FULL_DATASET_NAMES:
        for model in FULL_LANGUAGE_MODELS:
            get_stats_for_embedding_wer(dataset, PropertyHelper.word_wer_embeddings_metrics(model))