Skip to content
Snippets Groups Projects
run_experiment.ipynb 9.18 KiB
Newer Older
Marcin Wątroba's avatar
Marcin Wątroba committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "source": [
    "# Run experiment\n"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "markdown",
   "source": [
    "To run any experiment steps in `import_any_dataset.ipynb` and `use_any_asr.ipynb` must be done.\n",
    "Experiment is managed by `ExperimentRepository`. Below is example of simple experiment."
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "# imports\n",
    "from experiment.sentence_wer_processor.flair_upos_multi_transformers_wer_processor_base import \\\n",
    "    FlairUposMultiTransformersWerProcessorBase\n",
    "from experiment.sentence_wer_processor.wikineural_multilingual_ner_transformers_wer_processor_base import \\\n",
    "    WikineuralMultilingualNerTransformersWerProcessorBase\n",
    "from experiment.sentence_wer_processor.spacy_pos_sentence_dep_tag_processor import SpacyDepTagSentenceWerProcessor\n",
    "from experiment.sentence_wer_processor.spacy_ner_sentence_wer_processor import SpacyNerSentenceWerProcessor\n",
    "from experiment.sentence_wer_processor.spacy_pos_sentence_wer_processor import SpacyPosSentenceWerProcessor\n",
    "from sziszapangma.core.transformer.fasttext_embedding_transformer import FasttextEmbeddingTransformer\n",
    "from sziszapangma.integration.task.embedding_wer_metrics_task import EmbeddingWerMetricsTask\n",
    "from sziszapangma.integration.task.classic_wer_metric_task import ClassicWerMetricTask\n",
    "from experiment.hf_asr.wav2vec2_hf import Wav2Vec2AsrProcessor\n",
    "from experiment.utils.property_helper import PropertyHelper\n",
    "from sziszapangma.integration.task.asr_task import AsrTask\n",
    "from sziszapangma.integration.experiment_manager import ExperimentManager\n",
    "from sziszapangma.integration.audio_repository.local_audio_record_repository import LocalAudioRecordRepository\n",
    "from experiment.utils.loaded_dataset_helper import LoadedDatasetHelper\n",
    "from pathlib import Path\n",
    "from sziszapangma.integration.repository.multi_files_experiment_repository import MultiFilesExperimentRepository"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "# globals\n",
    "DATASET_NAME = 'dataset_name'\n",
    "ASR_NAME = 'asr_name'\n",
    "REPOSITORY_ROOT_PATH = Path.home() / 'asr-benchmarks-repository'\n",
    "AUDIO_ROOT_PATH = Path.home() / '.cache/asr-benchmarks'\n",
    "FASTTEXT_LANGUAGE_CODE = 'pl'\n",
    "WIKINEURAL = \"wikineural\"\n",
    "SPACY_MODEL_NAME = 'pl_core_news_lg'\n",
    "FLAIR_UPOS_MULTI = 'flair_upos_multi'"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "# data providers\n",
    "repository = MultiFilesExperimentRepository(REPOSITORY_ROOT_PATH, DATASET_NAME)\n",
    "record_provider = LoadedDatasetHelper(\n",
    "    repository, LocalAudioRecordRepository(AUDIO_ROOT_PATH, DATASET_NAME), DATASET_NAME\n",
    ")"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "# experiment definition\n",
    "experiment_processor = ExperimentManager(\n",
    "    record_id_iterator=record_provider,\n",
    "    processing_tasks=[\n",
    "        AsrTask(\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            task_name=f\"AsrTask___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            require_update=False,\n",
    "            asr_processor=Wav2Vec2AsrProcessor(\"facebook/wav2vec2-large-xlsr-53-polish\"),\n",
    "            record_path_provider=record_provider,\n",
    "        ),\n",
    "        ClassicWerMetricTask(\n",
    "            task_name=f\"ClassicWerMetricTask___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            gold_transcript_property_name=PropertyHelper.get_gold_transcript_words(),\n",
    "            metrics_property_name=PropertyHelper.word_wer_classic_metrics(ASR_NAME),\n",
    "            require_update=False,\n",
    "            alignment_property_name=PropertyHelper.word_wer_classic_alignment(ASR_NAME),\n",
    "        ),\n",
    "        EmbeddingWerMetricsTask(\n",
    "            task_name=f\"EmbeddingWerMetricsTask___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            gold_transcript_property_name=PropertyHelper.get_gold_transcript_words(),\n",
    "            require_update=False,\n",
    "            embedding_transformer=FasttextEmbeddingTransformer(FASTTEXT_LANGUAGE_CODE),\n",
    "            embeddings_alignment_property_name=PropertyHelper.word_wer_embeddings_alignment(ASR_NAME),\n",
    "            embeddings_metrics_property_name=PropertyHelper.word_wer_embeddings_metrics(ASR_NAME),\n",
    "            soft_alignment_property_name=PropertyHelper.word_wer_soft_alignment(ASR_NAME),\n",
    "            soft_metrics_property_name=PropertyHelper.word_wer_soft_metrics(ASR_NAME),\n",
    "        ),\n",
    "        SpacyPosSentenceWerProcessor(\n",
    "            model_name=SPACY_MODEL_NAME,\n",
    "            gold_transcript_property_name=PropertyHelper.get_gold_transcript_raw(),\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            alignment_property_name=PropertyHelper.pos_alignment(ASR_NAME, SPACY_MODEL_NAME),\n",
    "            wer_property_name=PropertyHelper.pos_metrics(ASR_NAME, SPACY_MODEL_NAME),\n",
    "            task_name=f\"SpacyPosSentenceWerProcessor___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            require_update=False,\n",
    "        ),\n",
    "        SpacyNerSentenceWerProcessor(\n",
    "            model_name=SPACY_MODEL_NAME,\n",
    "            gold_transcript_property_name=PropertyHelper.get_gold_transcript_raw(),\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            alignment_property_name=PropertyHelper.ner_alignment(\n",
    "                ASR_NAME, SPACY_MODEL_NAME\n",
    "            ),\n",
    "            wer_property_name=PropertyHelper.ner_metrics(ASR_NAME, SPACY_MODEL_NAME),\n",
    "            task_name=f\"SpacyNerSentenceWerProcessor___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            require_update=False,\n",
    "        ),\n",
    "        SpacyDepTagSentenceWerProcessor(\n",
    "            model_name=SPACY_MODEL_NAME,\n",
    "            gold_transcript_property_name=PropertyHelper.get_gold_transcript_raw(),\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            alignment_property_name=PropertyHelper.dep_tag_alignment(\n",
    "                ASR_NAME, SPACY_MODEL_NAME\n",
    "            ),\n",
    "            wer_property_name=PropertyHelper.dep_tag_metrics(ASR_NAME, SPACY_MODEL_NAME),\n",
    "            task_name=f\"SpacyDepTagSentenceWerProcessor___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            require_update=False,\n",
    "        ),\n",
    "        WikineuralMultilingualNerTransformersWerProcessorBase(\n",
    "            gold_transcript_property_name=PropertyHelper.get_gold_transcript_raw(),\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            alignment_property_name=PropertyHelper.ner_alignment(\n",
    "                ASR_NAME, WIKINEURAL\n",
    "            ),\n",
    "            wer_property_name=PropertyHelper.ner_metrics(ASR_NAME, WIKINEURAL),\n",
    "            task_name=f\"WikineuralMultilingualNerTransformersWerProcessorBase___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            require_update=False,\n",
    "        ),\n",
    "        FlairUposMultiTransformersWerProcessorBase(\n",
    "            gold_transcript_property_name=PropertyHelper.get_gold_transcript_raw(),\n",
    "            asr_property_name=PropertyHelper.asr_result(ASR_NAME),\n",
    "            alignment_property_name=PropertyHelper.pos_alignment(\n",
    "                ASR_NAME, FLAIR_UPOS_MULTI\n",
    "            ),\n",
    "            wer_property_name=PropertyHelper.pos_metrics(\n",
    "                ASR_NAME, FLAIR_UPOS_MULTI\n",
    "            ),\n",
    "            task_name=f\"FlairUposMultiTransformersWerProcessorBase___{DATASET_NAME}___{ASR_NAME}\",\n",
    "            require_update=False,\n",
    "        )\n",
    "    ],\n",
    "    experiment_repository=repository,\n",
    ")"
   ],
   "metadata": {
    "collapsed": false
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [
    "# run experiment\n",
    "experiment_processor.process()\n"
   ],
   "metadata": {
    "collapsed": false
   }
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}