Select Git revision
conditional.cpp
sample_polem.py 1.27 KiB
import time
from poldeepner2.models import PolDeepNer2, ModelFactory
resources_path = "../poldeepner2_models"
t0 = time.time()
model = ModelFactory.get_resource("pdn2_cen_n82_roberta_large_sq_krnnt_cuda"
".pdn2", resources_path)
ner = PolDeepNer2.load(model)
time_model = time.time() - t0
sentences = ["Spotkałem Marka Nowaka na Politechnice Wrocławskiej, który "
"pracuje w Intelu.",
"Wczoraj mieliśmy kontrolę Naczelnej Izby Skarbowej.",
open("tests/resources/text_krakow.txt", "r",
encoding="utf-8").read()]
token_count = 0
t0 = time.time()
for sentence in sentences:
print("-" * 20)
print(sentence.strip())
doc = ner.process_document(sentence)
token_count += len(doc.tokens)
for name in doc.annotations:
name_range = "%d:%d" % (name.start, name.end)
char_range = "%d:%d" % (doc.tokens[name.start].start,
doc.tokens[name.end - 1].end)
print(f"{name_range:<8} {char_range:<12} {name.label:<25} "
f"{name.get_text():<25} {name.lemma}")
print()
print()
print(f"Model loaded in : {time_model} seconds")
print(f"Texts processed in: {time.time()-t0} seconds")
print(f"Number of tokens : {token_count}")