diff --git a/src/lambo/examples/run_pretraining.py b/src/lambo/examples/run_pretraining.py
index a6d0173a33f13e0d3cc7796787ee00e11095e7dd..6ff74bcdf950584987de13b5a29dd8944ae9d4d6 100644
--- a/src/lambo/examples/run_pretraining.py
+++ b/src/lambo/examples/run_pretraining.py
@@ -15,13 +15,13 @@ from lambo.learning.preprocessing_pretraining import encode_pretraining, prepare
 from lambo.learning.train import pretrain
 from lambo.utils.oscar import read_jsonl_to_documents, download_archive1_from_oscar
 
-if __name__=='__main__':
-    outpath = Path(sys.argv[1]) #Path.home() / 'PATH-TO/models/pretrained/'
-    tmppath = Path(sys.argv[2]) #Path.home() / 'PATH-TO/tmp/tmp.jsonl.gz'
+if __name__ == '__main__':
+    outpath = Path(sys.argv[1])  # Path.home() / 'PATH-TO/models/pretrained/'
+    tmppath = Path(sys.argv[2])  # Path.home() / 'PATH-TO/tmp/tmp.jsonl.gz'
     # These need to be filled ine before running. OSCAR is avaialable on request.
     OSCAR_LOGIN = sys.argv[3]
     OSCAR_PASSWORD = sys.argv[4]
-
+    
     device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
     
     languages_file_str = resources.read_text('lambo.resources', 'languages.txt', encoding='utf-8', errors='strict')
@@ -32,7 +32,9 @@ if __name__=='__main__':
     MAX_DOCUMENTS = 100
     CONTEXT_LEN = 1024
     
-    for language in languages:
+    for l, language in enumerate(languages):
+        if l % 5 != int(sys.argv[5]):
+            continue
         if (outpath / ('oscar_' + language + '.pth')).exists():
             continue
         print("Language: " + language)
@@ -52,7 +54,8 @@ if __name__=='__main__':
             print(str(i + 1) + '/' + str(min(len(train_documents), MAX_DOCUMENTS)))
             Xchars, Xutfs, Xmasks, Yvecs = encode_pretraining([document_train], dict, CONTEXT_LEN)
             _, train_dataloader, test_dataloader = prepare_dataloaders_pretraining([document_train],
-                                                                                   [document_test], CONTEXT_LEN, 32, dict)
+                                                                                   [document_test], CONTEXT_LEN, 32,
+                                                                                   dict)
             pretrain(model, train_dataloader, test_dataloader, 1, device)
         torch.save(model, outpath / ('oscar_' + language + '.pth'))
         with open(outpath / ('oscar_' + language + '.dict'), "w") as file1: