diff --git a/combo/data/dataset.py b/combo/data/dataset.py
index 3b16c149b7abd9e2aba6ac50a4b0b71740d4f5d7..f5876b0e5a073b95849130947b612ab23f1b1208 100644
--- a/combo/data/dataset.py
+++ b/combo/data/dataset.py
@@ -1,24 +1,8 @@
-import copy
 import logging
-import pathlib
 from dataclasses import dataclass
-from typing import List, Any, Dict, Iterable, Optional, Tuple
+from typing import Optional
 
-import conllu
-import torch
-from overrides import overrides
-
-from combo import data
-from combo.data import Vocabulary, fields, Instance, Token, TokenizerToken
-from combo.data.dataset_readers.dataset_reader import DatasetReader
-from combo.data.fields import Field
-from combo.data.fields.adjacency_field import AdjacencyField
-from combo.data.fields.metadata_field import MetadataField
-from combo.data.fields.sequence_label_field import SequenceLabelField
-from combo.data.fields.text_field import TextField
-from combo.data.token_indexers import TokenIndexer
-from combo.models import parser
-from combo.utils import checks, pad_sequence_to_length
+from combo.data import TokenizerToken
 
 logger = logging.getLogger(__name__)
 
@@ -34,240 +18,3 @@ class _Token(TokenizerToken):
                  feats_: str = None) -> None:
         super().__init__(text, idx, idx_end, lemma_, pos_, tag_, dep_, ent_type_, text_id, type_id)
         self.feats_ = feats_
-
-
-class UniversalDependenciesDatasetReader(DatasetReader):
-    def __init__(
-            self,
-            token_indexers: Dict[str, TokenIndexer] = None,
-            lemma_indexers: Dict[str, TokenIndexer] = None,
-            features: List[str] = None,
-            targets: List[str] = None,
-            use_sem: bool = False,
-            **kwargs,
-    ) -> None:
-        super().__init__(**kwargs)
-        if features is None:
-            features = ["token", "char"]
-        if targets is None:
-            targets = ["head", "deprel", "upostag", "xpostag", "lemma", "feats"]
-
-        if "token" not in features and "char" not in features:
-            raise checks.ConfigurationError("There must be at least one ('char' or 'token') text-based feature!")
-
-        if "deps" in targets and not ("head" in targets and "deprel" in targets):
-            raise checks.ConfigurationError("Add 'head' and 'deprel' to targets when using 'deps'!")
-
-        intersection = set(features).intersection(set(targets))
-        if len(intersection) != 0:
-            raise checks.ConfigurationError(
-                "Features and targets cannot share elements! "
-                "Remove {} from either features or targets.".format(intersection)
-            )
-        self.use_sem = use_sem
-
-        # *.conllu readers configuration
-        fields = list(parser.DEFAULT_FIELDS)
-        fields[1] = "token"  # use 'token' instead of 'form'
-        field_parsers = parser.DEFAULT_FIELD_PARSERS
-        # Do not make it nullable
-        field_parsers.pop("xpostag", None)
-        # Ignore parsing misc
-        field_parsers.pop("misc", None)
-        if self.use_sem:
-            fields = list(fields)
-            fields.append("semrel")
-            field_parsers["semrel"] = lambda line, i: line[i]
-        self.field_parsers = field_parsers
-        self.fields = tuple(fields)
-
-        self._token_indexers = token_indexers
-        self._lemma_indexers = lemma_indexers
-        self._targets = targets
-        self._features = features
-        self.generate_labels = True
-        # Filter out not required token indexers to avoid
-        # Mismatched token keys ConfigurationError
-        for indexer_name in list(self._token_indexers.keys()):
-            if indexer_name not in self._features:
-                del self._token_indexers[indexer_name]
-
-    @overrides
-    def _read(self, file_path: str) -> Iterable[Instance]:
-        file_path = [file_path] if len(file_path.split(",")) == 0 else file_path.split(",")
-
-        for conllu_file in file_path:
-            file = pathlib.Path(conllu_file)
-            assert conllu_file and file.exists(), f"File with path '{conllu_file}' does not exists!"
-            with file.open("r", encoding="utf-8") as f:
-                for annotation in conllu.parse_incr(f, fields=self.fields, field_parsers=self.field_parsers):
-                    yield self.text_to_instance(annotation)
-
-    # why is there an error? TypeError: UniversalDependenciesDatasetReader.text_to_instance: `inputs` must be present
-    #@overrides
-    def text_to_instance(self, tree: conllu.TokenList) -> Instance:
-        fields_: Dict[str, Field] = {}
-        tree_tokens = [t for t in tree if isinstance(t["id"], int)]
-        tokens = [_Token(t["token"],
-                         pos_=t.get("upostag"),
-                         tag_=t.get("xpostag"),
-                         lemma_=t.get("lemma"),
-                         feats_=t.get("feats"))
-                  for t in tree_tokens]
-
-        # features
-        text_field = TextField(tokens, self._token_indexers)
-        fields_["sentence"] = text_field
-
-        # targets
-        if self.generate_labels:
-            for target_name in self._targets:
-                if target_name != "sent":
-                    target_values = [t[target_name] for t in tree_tokens]
-                    if target_name == "lemma":
-                        target_values = [TokenizerToken(v) for v in target_values]
-                        fields_[target_name] = TextField(target_values, self._lemma_indexers)
-                    elif target_name == "feats":
-                        target_values = self._feat_values(tree_tokens)
-                        fields_[target_name] = fields.SequenceMultiLabelField(target_values,
-                                                                              self._feats_indexer,
-                                                                              self._feats_as_tensor_wrapper,
-                                                                              text_field,
-                                                                              label_namespace="feats_labels")
-                    elif target_name == "head":
-                        target_values = [0 if v == "_" else int(v) for v in target_values]
-                        fields_[target_name] = SequenceLabelField(target_values, text_field,
-                                                                  label_namespace=target_name + "_labels")
-                    elif target_name == "deps":
-                        # Graphs require adding ROOT (AdjacencyField uses sequence length from TextField).
-                        text_field_deps = TextField([_Token("ROOT")] + copy.deepcopy(tokens), self._token_indexers)
-                        enhanced_heads: List[Tuple[int, int]] = []
-                        enhanced_deprels: List[str] = []
-                        for idx, t in enumerate(tree_tokens):
-                            t_deps = t["deps"]
-                            if t_deps and t_deps != "_":
-                                for rel, head in t_deps:
-                                    # EmoryNLP skips the first edge, if there are two edges between the same
-                                    # nodes. Thanks to that one is in a tree and another in a graph.
-                                    # This snippet follows that approach.
-                                    if enhanced_heads and enhanced_heads[-1] == (idx, head):
-                                        enhanced_heads.pop()
-                                        enhanced_deprels.pop()
-                                    enhanced_heads.append((idx, head))
-                                    enhanced_deprels.append(rel)
-                        fields_["enhanced_heads"] = AdjacencyField(
-                            indices=enhanced_heads,
-                            sequence_field=text_field_deps,
-                            label_namespace="enhanced_heads_labels",
-                            padding_value=0,
-                        )
-                        fields_["enhanced_deprels"] = AdjacencyField(
-                            indices=enhanced_heads,
-                            sequence_field=text_field_deps,
-                            labels=enhanced_deprels,
-                            # Label namespace matches regular tree parsing.
-                            label_namespace="enhanced_deprel_labels",
-                            padding_value=0,
-                        )
-                    else:
-                        fields_[target_name] = SequenceLabelField(target_values, text_field,
-                                                                  label_namespace=target_name + "_labels")
-
-        # Restore feats fields to string representation
-        # parser.serialize_field doesn't handle key without value
-        for token in tree.tokens:
-            if "feats" in token:
-                feats = token["feats"]
-                if feats:
-                    feats_values = []
-                    for k, v in feats.items():
-                        feats_values.append('='.join((k, v)) if v else k)
-                    field = "|".join(feats_values)
-                else:
-                    field = "_"
-                token["feats"] = field
-
-        # metadata
-        fields_["metadata"] = MetadataField({"input": tree,
-                                             "field_names": self.fields,
-                                             "tokens": tokens})
-
-        return Instance(fields_)
-
-    @staticmethod
-    def _feat_values(tree: List[Dict[str, Any]]):
-        features = []
-        for token in tree:
-            token_features = []
-            if token["feats"] is not None:
-                for feat, value in token["feats"].items():
-                    if feat in ["_", "__ROOT__"]:
-                        pass
-                    else:
-                        # Handle case where feature is binary (doesn't have associated value)
-                        if value:
-                            token_features.append(feat + "=" + value)
-                        else:
-                            token_features.append(feat)
-            features.append(token_features)
-        return features
-
-    @staticmethod
-    def _feats_as_tensor_wrapper(field: fields.SequenceMultiLabelField):
-        def as_tensor(padding_lengths):
-            desired_num_tokens = padding_lengths["num_tokens"]
-            assert len(field._indexed_multi_labels) > 0
-            classes_count = len(field._indexed_multi_labels[0])
-            default_value = [0.0] * classes_count
-            padded_tags = pad_sequence_to_length(field._indexed_multi_labels, desired_num_tokens,
-                                                 lambda: default_value)
-            tensor = torch.tensor(padded_tags, dtype=torch.long)
-            return tensor
-
-        return as_tensor
-
-    @staticmethod
-    def _feats_indexer(vocab: Vocabulary):
-        label_namespace = "feats_labels"
-        vocab_size = vocab.get_vocab_size(label_namespace)
-        slices = get_slices_if_not_provided(vocab)
-
-        def _m_from_n_ones_encoding(multi_label: List[str], sentence_length: int) -> List[int]:
-            one_hot_encoding = [0] * vocab_size
-            for cat, cat_indices in slices.items():
-                if cat not in ["__PAD__", "_"]:
-                    label_from_cat = [label for label in multi_label if cat == label.split("=")[0]]
-                    if label_from_cat:
-                        label_from_cat = label_from_cat[0]
-                        index = vocab.get_token_index(label_from_cat, label_namespace)
-                    else:
-                        # Get Cat=None index
-                        index = vocab.get_token_index(cat + "=None", label_namespace)
-                    one_hot_encoding[index] = 1
-            return one_hot_encoding
-
-        return _m_from_n_ones_encoding
-
-
-def get_slices_if_not_provided(vocab: data.Vocabulary):
-    if hasattr(vocab, "slices"):
-        return vocab.slices
-
-    if "feats_labels" in vocab.get_namespaces():
-        idx2token = vocab.get_index_to_token_vocabulary("feats_labels")
-        for _, v in dict(idx2token).items():
-            if v not in ["_", "__PAD__"]:
-                empty_value = v.split("=")[0] + "=None"
-                vocab.add_token_to_namespace(empty_value, "feats_labels")
-
-        slices = {}
-        for idx, name in vocab.get_index_to_token_vocabulary("feats_labels").items():
-            # There are 2 types features: with (Case=Acc) or without assigment (None).
-            # Here we group their indices by name (before assigment sign).
-            name = name.split("=")[0]
-            if name in slices:
-                slices[name].append(idx)
-            else:
-                slices[name] = [idx]
-        vocab.slices = slices
-        return vocab.slices
diff --git a/combo/data/dataset_readers/universal_dependencies_dataset_reader.py b/combo/data/dataset_readers/universal_dependencies_dataset_reader.py
new file mode 100644
index 0000000000000000000000000000000000000000..ce17177d07431e6847fa5c0296f078bfbd9b2f11
--- /dev/null
+++ b/combo/data/dataset_readers/universal_dependencies_dataset_reader.py
@@ -0,0 +1,289 @@
+"""
+Adapted from AllenNLP
+Author: Mateusz Klimaszewski
+"""
+import copy
+import pathlib
+from typing import List, Any, Dict, Iterable, Tuple
+
+import conllu
+import torch
+from overrides import overrides
+
+from combo import data
+from combo.data import Vocabulary, fields, Instance, TokenizerToken
+from combo.data.dataset import _Token
+from combo.data.dataset_readers.dataset_reader import DatasetReader
+from combo.data.fields import Field
+from combo.data.fields.adjacency_field import AdjacencyField
+from combo.data.fields.metadata_field import MetadataField
+from combo.data.fields.sequence_label_field import SequenceLabelField
+from combo.data.fields.text_field import TextField
+from combo.data.token_indexers import TokenIndexer
+from conllu import parser
+from combo.utils import checks, pad_sequence_to_length
+
+
+class UniversalDependenciesDatasetReader(DatasetReader):
+    def __init__(
+            self,
+            token_indexers: Dict[str, TokenIndexer] = None,
+            lemma_indexers: Dict[str, TokenIndexer] = None,
+            features: List[str] = None,
+            targets: List[str] = None,
+            use_sem: bool = False,
+            **kwargs,
+    ) -> None:
+        super().__init__(token_indexers=token_indexers)
+        if features is None:
+            features = ["token", "char"]
+        if targets is None:
+            targets = ["head", "deprel", "upostag", "xpostag", "lemma", "feats"]
+
+        if "token" not in features and "char" not in features:
+            raise checks.ConfigurationError("There must be at least one ('char' or 'token') text-based feature!")
+
+        if "deps" in targets and not ("head" in targets and "deprel" in targets):
+            raise checks.ConfigurationError("Add 'head' and 'deprel' to targets when using 'deps'!")
+
+        intersection = set(features).intersection(set(targets))
+        if len(intersection) != 0:
+            raise checks.ConfigurationError(
+                "Features and targets cannot share elements! "
+                "Remove {} from either features or targets.".format(intersection)
+            )
+        self.use_sem = use_sem
+
+        # *.conllu readers configuration
+        fields = list(parser.DEFAULT_FIELDS)
+        fields[1] = "token"  # use 'token' instead of 'form'
+        field_parsers = parser.DEFAULT_FIELD_PARSERS
+        # Do not make it nullable
+        field_parsers.pop("xpostag", None)
+        # Ignore parsing misc
+        field_parsers.pop("misc", None)
+        if self.use_sem:
+            fields = list(fields)
+            fields.append("semrel")
+            field_parsers["semrel"] = lambda line, i: line[i]
+        self.field_parsers = field_parsers
+        self.fields = tuple(fields)
+
+        self.__lemma_indexers = lemma_indexers
+        self.__targets = targets
+        self.__features = features
+        self.generate_labels = True
+        # Filter out not required token indexers to avoid
+        # Mismatched token keys ConfigurationError
+        for indexer_name in list(self.token_indexers.keys()):
+            if indexer_name not in self.features:
+                del self.token_indexers[indexer_name]
+
+    @property
+    def lemma_indexers(self) -> Dict[str, TokenIndexer]:
+        return self.__lemma_indexers
+
+    @lemma_indexers.setter
+    def lemma_indexers(self, value: Dict[str, TokenIndexer]):
+        self.__lemma_indexers = value
+
+    @property
+    def targets(self) -> List[str]:
+        return self.__targets
+
+    @targets.setter
+    def targets(self, value: List[str]):
+        self.__targets = value
+
+    @property
+    def features(self) -> List[str]:
+        return self.__features
+
+    @features.setter
+    def features(self, value: List[str]):
+        self.__features = value
+
+    @overrides
+    def _read(self) -> Iterable[Instance]:
+        file_path = [self.file_path] if len(self.file_path.split(",")) == 0 else self.file_path.split(",")
+
+        for conllu_file in file_path:
+            file = pathlib.Path(conllu_file)
+            assert conllu_file and file.exists(), f"File with path '{conllu_file}' does not exists!"
+            with file.open("r", encoding="utf-8") as f:
+                for annotation in conllu.parse_incr(f, fields=self.fields, field_parsers=self.field_parsers):
+                    yield self.text_to_instance(annotation)
+
+    def __call__(self, file_path: str):
+        self.file_path = file_path
+        return self
+
+    def text_to_instance(self, tree: conllu.TokenList) -> Instance:
+        fields_: Dict[str, Field] = {}
+        tree_tokens = [t for t in tree if isinstance(t["id"], int)]
+        tokens = [_Token(t["token"],
+                         pos_=t.get("upostag"),
+                         tag_=t.get("xpostag"),
+                         lemma_=t.get("lemma"),
+                         feats_=t.get("feats"))
+                  for t in tree_tokens]
+
+        # features
+        text_field = TextField(tokens, self.token_indexers)
+        fields_["sentence"] = text_field
+
+        # targets
+        if self.generate_labels:
+            for target_name in self.targets:
+                if target_name != "sent":
+                    target_values = [t[target_name] for t in tree_tokens]
+                    if target_name == "lemma":
+                        target_values = [TokenizerToken(v) for v in target_values]
+                        fields_[target_name] = TextField(target_values, self.lemma_indexers)
+                    elif target_name == "feats":
+                        target_values = self._feat_values(tree_tokens)
+                        fields_[target_name] = fields.SequenceMultiLabelField(target_values,
+                                                                              self._feats_indexer,
+                                                                              self._feats_as_tensor_wrapper,
+                                                                              text_field,
+                                                                              label_namespace="feats_labels")
+                    elif target_name == "head":
+                        target_values = [0 if v == "_" else int(v) for v in target_values]
+                        fields_[target_name] = SequenceLabelField(target_values, text_field,
+                                                                  label_namespace=target_name + "_labels")
+                    elif target_name == "deps":
+                        # Graphs require adding ROOT (AdjacencyField uses sequence length from TextField).
+                        text_field_deps = TextField([_Token("ROOT")] + copy.deepcopy(tokens), self._token_indexers)
+                        enhanced_heads: List[Tuple[int, int]] = []
+                        enhanced_deprels: List[str] = []
+                        for idx, t in enumerate(tree_tokens):
+                            t_deps = t["deps"]
+                            if t_deps and t_deps != "_":
+                                for rel, head in t_deps:
+                                    # EmoryNLP skips the first edge, if there are two edges between the same
+                                    # nodes. Thanks to that one is in a tree and another in a graph.
+                                    # This snippet follows that approach.
+                                    if enhanced_heads and enhanced_heads[-1] == (idx, head):
+                                        enhanced_heads.pop()
+                                        enhanced_deprels.pop()
+                                    enhanced_heads.append((idx, head))
+                                    enhanced_deprels.append(rel)
+                        fields_["enhanced_heads"] = AdjacencyField(
+                            indices=enhanced_heads,
+                            sequence_field=text_field_deps,
+                            label_namespace="enhanced_heads_labels",
+                            padding_value=0,
+                        )
+                        fields_["enhanced_deprels"] = AdjacencyField(
+                            indices=enhanced_heads,
+                            sequence_field=text_field_deps,
+                            labels=enhanced_deprels,
+                            # Label namespace matches regular tree parsing.
+                            label_namespace="enhanced_deprel_labels",
+                            padding_value=0,
+                        )
+                    else:
+                        # TODO: co robic gdy nie ma xpostag?
+                        if all([t is None for t in target_values]):
+                            continue
+                        fields_[target_name] = SequenceLabelField(target_values, text_field,
+                                                                  label_namespace=target_name + "_labels")
+
+        # Restore feats fields to string representation
+        # parser.serialize_field doesn't handle key without value
+        for token in tree:
+            if "feats" in token:
+                feats = token["feats"]
+                if feats:
+                    feats_values = []
+                    for k, v in feats.items():
+                        feats_values.append('='.join((k, v)) if v else k)
+                    field = "|".join(feats_values)
+                else:
+                    field = "_"
+                token["feats"] = field
+
+        # metadata
+        fields_["metadata"] = MetadataField({"input": tree,
+                                             "field_names": self.fields,
+                                             "tokens": tokens})
+
+        return Instance(fields_)
+
+    @staticmethod
+    def _feat_values(tree: List[Dict[str, Any]]):
+        features = []
+        for token in tree:
+            token_features = []
+            if token["feats"] is not None:
+                for feat, value in token["feats"].items():
+                    if feat in ["_", "__ROOT__"]:
+                        pass
+                    else:
+                        # Handle case where feature is binary (doesn't have associated value)
+                        if value:
+                            token_features.append(feat + "=" + value)
+                        else:
+                            token_features.append(feat)
+            features.append(token_features)
+        return features
+
+    @staticmethod
+    def _feats_as_tensor_wrapper(field: fields.SequenceMultiLabelField):
+        def as_tensor(padding_lengths):
+            desired_num_tokens = padding_lengths["num_tokens"]
+            assert len(field._indexed_multi_labels) > 0
+            classes_count = len(field._indexed_multi_labels[0])
+            default_value = [0.0] * classes_count
+            padded_tags = pad_sequence_to_length(field._indexed_multi_labels, desired_num_tokens,
+                                                 lambda: default_value)
+            tensor = torch.tensor(padded_tags, dtype=torch.long)
+            return tensor
+
+        return as_tensor
+
+    @staticmethod
+    def _feats_indexer(vocab: Vocabulary):
+        label_namespace = "feats_labels"
+        vocab_size = vocab.get_vocab_size(label_namespace)
+        slices = get_slices_if_not_provided(vocab)
+
+        def _m_from_n_ones_encoding(multi_label: List[str], sentence_length: int) -> List[int]:
+            one_hot_encoding = [0] * vocab_size
+            for cat, cat_indices in slices.items():
+                if cat not in ["__PAD__", "_"]:
+                    label_from_cat = [label for label in multi_label if cat == label.split("=")[0]]
+                    if label_from_cat:
+                        label_from_cat = label_from_cat[0]
+                        index = vocab.get_token_index(label_from_cat, label_namespace)
+                    else:
+                        # Get Cat=None index
+                        index = vocab.get_token_index(cat + "=None", label_namespace)
+                    one_hot_encoding[index] = 1
+            return one_hot_encoding
+
+        return _m_from_n_ones_encoding
+
+
+def get_slices_if_not_provided(vocab: data.Vocabulary):
+    if hasattr(vocab, "slices"):
+        return vocab.slices
+
+    if "feats_labels" in vocab.get_namespaces():
+        idx2token = vocab.get_index_to_token_vocabulary("feats_labels")
+        for _, v in dict(idx2token).items():
+            if v not in ["_", "__PAD__"]:
+                empty_value = v.split("=")[0] + "=None"
+                vocab.add_token_to_namespace(empty_value, "feats_labels")
+
+        slices = {}
+        for idx, name in vocab.get_index_to_token_vocabulary("feats_labels").items():
+            # There are 2 types features: with (Case=Acc) or without assigment (None).
+            # Here we group their indices by name (before assigment sign).
+            name = name.split("=")[0]
+            if name in slices:
+                slices[name].append(idx)
+            else:
+                slices[name] = [idx]
+        vocab.slices = slices
+        return vocab.slices
diff --git a/tests/data/data_readers/test_universal_dependencies_dataset_reader.py b/tests/data/data_readers/test_universal_dependencies_dataset_reader.py
new file mode 100644
index 0000000000000000000000000000000000000000..a3c3d4ba3774546608a4d303f351ddd9081fb634
--- /dev/null
+++ b/tests/data/data_readers/test_universal_dependencies_dataset_reader.py
@@ -0,0 +1,29 @@
+import unittest
+
+from combo.data import UniversalDependenciesDatasetReader
+
+
+class UniversalDependenciesDatasetReaderTest(unittest.TestCase):
+    def test_read_all_tokens(self):
+        t = UniversalDependenciesDatasetReader()
+        tokens = [token for token in t('tl_trg-ud-test.conllu')]
+        self.assertEqual(len(tokens), 128)
+
+    def test_read_text(self):
+        t = UniversalDependenciesDatasetReader()
+        token = next(iter(t('tl_trg-ud-test.conllu')))
+        self.assertListEqual([str(t) for t in token['sentence'].tokens],
+                             ['Gumising', 'ang', 'bata', '.'])
+
+    def test_read_deprel(self):
+        t = UniversalDependenciesDatasetReader()
+        token = next(iter(t('tl_trg-ud-test.conllu')))
+        self.assertListEqual(token['deprel'].labels,
+                             ['root', 'case', 'nsubj', 'punct'])
+
+    def test_read_upostag(self):
+        t = UniversalDependenciesDatasetReader()
+        token = next(iter(t('tl_trg-ud-test.conllu')))
+        self.assertListEqual(token['upostag'].labels,
+                             ['VERB', 'ADP', 'NOUN', 'PUNCT'])
+
diff --git a/tests/data/data_readers/tl_trg-ud-test.conllu b/tests/data/data_readers/tl_trg-ud-test.conllu
new file mode 100644
index 0000000000000000000000000000000000000000..4feec58e0ff99c3ee98739866d7e8ad8b083bba1
--- /dev/null
+++ b/tests/data/data_readers/tl_trg-ud-test.conllu
@@ -0,0 +1,1343 @@
+# sent_id = schachter-otanes-60-0
+# text = Gumising ang bata.
+# text_en = The child awoke.
+1	Gumising	gising	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=awakened
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	bata	bata	NOUN	_	_	1	nsubj	_	Gloss=child|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-60-1
+# text = Ginising ng ingay ang bata.
+# text_en = A noise awakened the child.
+1	Ginising	gising	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=awakened
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	ingay	ingay	NOUN	_	_	1	obj:agent	_	Gloss=noise
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	bata	bata	NOUN	_	_	1	nsubj:pass	_	Gloss=child|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-60-2
+# text = Sinulat ko ang liham.
+# text_en = I wrote the letter.
+1	Sinulat	sulat	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=written
+2	ko	ako	PRON	_	Case=Gen|Number=Sing|Person=1|PronType=Prs	1	obj:agent	_	Gloss=I
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	liham	liham	NOUN	_	_	1	nsubj:pass	_	Gloss=letter|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-60-3
+# text = Sinulatan ko ang titser.
+# text_en = I wrote to the teacher.
+1	Sinulatan	sulat	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=written
+2	ko	ako	PRON	_	Case=Gen|Number=Sing|Person=1|PronType=Prs	1	obj:agent	_	Gloss=I
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	titser	titser	NOUN	_	_	1	nsubj:pass	_	Gloss=teacher|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-61-2
+# text = Dumarating na ang bus.
+# text_en = The bus is coming now.
+1	Dumarating	dating	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=coming
+2	na	na	ADV	_	PronType=Dem	1	advmod	_	Gloss=now
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	bus	bus	NOUN	_	Foreign=Yes	1	nsubj	_	Gloss=bus|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-61-3
+# text = Artista ang babae.
+# text_en = The woman is an actress.
+1	Artista	artista	NOUN	_	_	0	root	_	Gloss=actress
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	babae	babae	NOUN	_	_	1	nsubj	_	Gloss=woman|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-61-4
+# text = Maganda ang babae.
+# text_en = The woman is beautiful.
+1	Maganda	ganda	ADJ	_	Degree=Pos	0	root	_	Gloss=beautiful
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	babae	babae	NOUN	_	_	1	nsubj	_	Gloss=woman|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-61-5
+# text = Yumaman ang babae.
+# text_en = The woman got rich.
+1	Yumaman	yaman	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=got-rich
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	babae	babae	NOUN	_	_	1	nsubj	_	Gloss=woman|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-62-0
+# text = Artista ang yumaman.
+# text_en = The one who got rich is an actress.
+1	Artista	artista	NOUN	_	_	0	root	_	Gloss=actress
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	yumaman	yaman	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	1	csubj	_	Gloss=got-rich|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-62-1
+# text = Artista ang nagluto ng pagkain.
+# text_en = The one who cooked some food is an actress.
+1	Artista	artista	NOUN	_	_	3	nsubj	_	Gloss=actress
+2	ang	ang	ADP	_	Case=Nom	1	case	_	Gloss=the
+3	nagluto	luto	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=cooked
+4	ng	ng	ADP	_	Case=Gen	5	case	_	_
+5	pagkain	pagkain	NOUN	_	_	3	obj	_	Gloss=food|SpaceAfter=No
+6	.	.	PUNCT	_	_	3	punct	_	_
+
+# sent_id = schachter-otanes-64-0
+# text = Siya ang Amerikano.
+# text_en = He's the American.
+1	Siya	siya	PRON	_	Case=Nom|Number=Sing|Person=3|PronType=Prs	0	root	_	Gloss=he/she
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	Amerikano	amerikano	NOUN	_	_	1	nsubj	_	Gloss=American|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-64-1
+# text = Iyan ang bahay.
+# text_en = That's the house.
+1	Iyan	iyan	PRON	_	Case=Nom|Deixis=Med|Number=Sing|PronType=Dem	0	root	_	Gloss=that
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	bahay	bahay	NOUN	_	_	1	obj	_	Gloss=house|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-64-2
+# text = Si Juan ang bunso.
+# text_en = Juan's the youngest child.
+1	Si	si	ADP	_	Case=Nom	2	case	_	Gloss=the
+2	Juan	Juan	PROPN	_	Gender=Masc	0	root	_	Gloss=Juan
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	bunso	bunso	NOUN	_	_	2	nsubj	_	Gloss=youngest|SpaceAfter=No
+5	.	.	PUNCT	_	_	2	punct	_	_
+
+# sent_id = schachter-otanes-64-3
+# text = Isda ang bakalaw.
+# text_en = The cod is a fish.
+1	Isda	isda	NOUN	_	_	0	root	_	Gloss=fish
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	bakalaw	bakalaw	NOUN	_	_	1	nsubj	_	Gloss=cod|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-64-4
+# text = Isda ang pagkain niya.
+# text_en = His meal is some fish.
+1	Isda	isda	NOUN	_	_	0	root	_	Gloss=fish
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	pagkain	pagkain	NOUN	_	_	1	nsubj	_	Gloss=food
+4	niya	siya	PRON	_	Case=Gen|Number=Sing|Person=3|PronType=Prs	3	nmod:poss	_	Gloss=his/her|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-64-5
+# text = Isda ang paborito niya.
+# text_en = His favorite is fish.
+1	Isda	isda	NOUN	_	_	0	root	_	Gloss=fish
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	paborito	paborito	NOUN	_	_	1	nsubj	_	Gloss=favorite
+4	niya	siya	PRON	_	Case=Gen|Number=Sing|Person=3|PronType=Prs	3	nmod:poss	_	Gloss=his/her|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-64-6
+# text = Bato ang bahay.
+# text_en = The house is stone.
+1	Bato	bato	NOUN	_	_	0	root	_	Gloss=stone
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	bahay	bahay	NOUN	_	_	1	nsubj	_	Gloss=house|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-64-7
+# text = Bago ang bahay.
+# text_en = The house is new.
+1	Bago	bago	ADJ	_	Degree=Pos	0	root	_	Gloss=new
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	bahay	bahay	NOUN	_	_	1	nsubj	_	Gloss=house|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-65-0
+# text = Bagong-bago ang bahay.
+# text_en = The house is very new.
+1	Bagong	bago	ADJ	_	Degree=Pos|Link=Yes	3	compound:redup	_	Gloss=new|SpaceAfter=No
+2	-	-	PUNCT	_	_	3	punct	_	SpaceAfter=No
+3	bago	bago	ADJ	_	Degree=Pos	0	root	_	Gloss=new
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	bahay	bahay	NOUN	_	_	3	nsubj	_	Gloss=house|SpaceAfter=No
+6	.	.	PUNCT	_	_	3	punct	_	_
+
+# sent_id = schachter-otanes-65-2
+# text = Mabuti ang panahon.
+# text_en = The weather is good.
+1	Mabuti	buti	ADJ	_	Degree=Pos	0	root	_	Gloss=good
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	panahon	panahon	NOUN	_	_	1	nsubj	_	Gloss=weather|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-65-3
+# text = Matamis ang kendi.
+# text_en = The candy is sweet.
+1	Matamis	tamis	ADJ	_	Degree=Pos	0	root	_	Gloss=sweet
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	kendi	kendi	NOUN	_	_	1	nsubj	_	Gloss=candy|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-65-4
+# text = Pagod ang bata.
+# text_en = The child is tired.
+1	Pagod	pagod	ADJ	_	Degree=Pos	0	root	_	Gloss=tired
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	bata	bata	NOUN	_	_	1	nsubj	_	Gloss=child|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-65-5
+# text = Nasa kusina ang mesa.
+# text_en = The table is in the kitchen.
+1	Nasa	nasa	ADP	_	_	2	case	_	Gloss=in
+2	kusina	kusina	NOUN	_	_	0	root	_	Gloss=kitchen
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	mesa	mesa	NOUN	_	_	2	nsubj	_	Gloss=table|SpaceAfter=No
+5	.	.	PUNCT	_	_	2	punct	_	_
+
+# sent_id = schachter-otanes-65-6
+# text = Para sa bata ang laruan.
+# text_en = The toy is for the child.
+1	Para	para	ADP	_	_	3	case	_	Gloss=for
+2	sa	sa	ADP	_	Case=Dat	3	case	_	Gloss=to
+3	bata	bata	NOUN	_	_	0	root	_	Gloss=child
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	laruan	laruan	NOUN	_	_	3	nsubj	_	Gloss=toy|SpaceAfter=No
+6	.	.	PUNCT	_	_	3	punct	_	_
+
+# sent_id = schachter-otanes-65-7
+# text = Tungkol sa giyera ang kuwento.
+# text_en = The story is about the war.
+1	Tungkol	tungkol	ADP	_	_	3	case	_	Gloss=about
+2	sa	sa	ADP	_	Case=Dat	3	case	_	Gloss=to
+3	giyera	giyera	NOUN	_	_	0	root	_	Gloss=war
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	kuwento	kuwento	NOUN	_	_	3	nsubj	_	Gloss=story|SpaceAfter=No
+6	.	.	PUNCT	_	_	3	punct	_	_
+
+# sent_id = schachter-otanes-65-8
+# text = May gulayan ang babae.
+# text_en = The woman has a vegetable garden.
+1	May	may	VERB	_	Polarity=Pos	0	root	_	Gloss=exist
+2	gulayan	gulayan	NOUN	_	_	1	obj	_	Gloss=vegetable-garden
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	babae	babae	NOUN	_	_	1	nsubj	_	Gloss=woman|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-65-9
+# text = Kailangan ko ang kuwalta.
+# text_en = I need the money.
+1	Kailangan	kailangan	VERB	_	Aspect=Hab	0	root	_	Gloss=necessary
+2	ko	ako	PRON	_	Case=Gen|Number=Sing|Person=1|PronType=Prs	1	obj	_	Gloss=I
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	kuwalta	kuwalta	NOUN	_	_	1	nsubj	_	Gloss=money|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-65-10
+# text = Sa istudyante ang libro.
+# text_en = The book belongs to the student.
+1	Sa	sa	ADP	_	Case=Dat	2	case	_	Gloss=to
+2	istudyante	istudyante	NOUN	_	_	0	root	_	Gloss=student
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	libro	libro	NOUN	_	_	2	nsubj	_	Gloss=book|SpaceAfter=No
+5	.	.	PUNCT	_	_	2	punct	_	_
+
+# sent_id = schachter-otanes-67-0
+# text = Nagluto ng pagkain ang nanay.
+# text_en = Mother cooked some food.
+1	Nagluto	luto	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=cooked
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	pagkain	pagkain	NOUN	_	_	1	obj	_	Gloss=food
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	nanay	nanay	NOUN	_	_	1	nsubj	_	Gloss=mother|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-67-1
+# text = Nagluto na ng pagkain ang nanay.
+# text_en = Mother has cooked some food.
+1	Nagluto	luto	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=cooked
+2	na	na	ADV	_	PronType=Dem	1	advmod	_	Gloss=now
+3	ng	ng	ADP	_	Case=Gen	4	case	_	_
+4	pagkain	pagkain	NOUN	_	_	1	obj	_	Gloss=food
+5	ang	ang	ADP	_	Case=Nom	6	case	_	Gloss=the
+6	nanay	nanay	NOUN	_	_	1	nsubj	_	Gloss=mother|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-67-2
+# text = Nagluto na ng pagkain ang nanay noong dumating ako.
+# text_en = Mother had cooked some food when I arrived.
+1	Nagluto	luto	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=cooked
+2	na	na	ADV	_	PronType=Dem	1	advmod	_	Gloss=now
+3	ng	ng	ADP	_	Case=Gen	4	case	_	_
+4	pagkain	pagkain	NOUN	_	_	1	obj	_	Gloss=food
+5	ang	ang	ADP	_	Case=Nom	6	case	_	Gloss=the
+6	nanay	nanay	NOUN	_	_	1	nsubj	_	Gloss=mother
+7	noong	nang	SCONJ	_	_	8	mark	_	Gloss=when
+8	dumating	dating	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	1	advcl	_	Gloss=arrived
+9	ako	ako	PRON	_	Case=Nom|Number=Sing|Person=1|PronType=Prs	8	nsubj	_	Gloss=I|SpaceAfter=No
+10	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-67-3
+# text = Nagluluto ng pagkain ang nanay araw-araw.
+# text_en = Mother is cooking some food everyday.
+1	Nagluluto	luto	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=cooking
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	pagkain	pagkain	NOUN	_	_	1	obj	_	Gloss=food
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	nanay	nanay	NOUN	_	_	1	nsubj	_	Gloss=mother
+6	araw	araw	NOUN	_	_	8	compound:redup	_	Gloss=day|SpaceAfter=No
+7	-	-	PUNCT	_	_	8	punct	_	SpaceAfter=No
+8	araw	araw	NOUN	_	_	1	obl	_	Gloss=day|SpaceAfter=No
+9	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-67-4
+# text = Nagluluto na ng pagkain ang nanay.
+# text_en = Mother is cooking some food now.
+1	Nagluluto	luto	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=cooking
+2	na	na	ADV	_	PronType=Dem	1	advmod	_	Gloss=now
+3	ng	ng	ADP	_	Case=Gen	4	case	_	_
+4	pagkain	pagkain	NOUN	_	_	1	obj	_	Gloss=food
+5	ang	ang	ADP	_	Case=Nom	6	case	_	Gloss=the
+6	nanay	nanay	NOUN	_	_	1	nsubj	_	Gloss=mother|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-67-5
+# text = Nagluluto ng pagkain ang nanay noong dumating ako.
+# text_en = Mother was cooking some food when I arrived.
+1	Nagluluto	luto	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=cooking
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	pagkain	pagkain	NOUN	_	_	1	obj	_	Gloss=food
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	nanay	nanay	NOUN	_	_	1	nsubj	_	Gloss=mother
+6	noong	nang	SCONJ	_	_	7	mark	_	Gloss=when
+7	dumating	dating	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	1	advcl	_	Gloss=arrived
+8	ako	ako	PRON	_	Case=Nom|Number=Sing|Person=1|PronType=Prs	7	nsubj	_	Gloss=I|SpaceAfter=No
+9	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-67-6
+# text = Magluluto ng pagkain ang nanay bukas.
+# text_en = Mother will cook some food tomorrow.
+1	Magluluto	luto	VERB	_	Aspect=Prosp|Mood=Ind|Voice=Act	0	root	_	Gloss=will-cook
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	pagkain	pagkain	NOUN	_	_	1	obj	_	Gloss=food
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	nanay	nanay	NOUN	_	_	1	nsubj	_	Gloss=mother
+6	bukas	bukas	ADV	_	_	1	advmod	_	Gloss=tomorrow|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-67-7
+# text = Hindi pa nagluluto ng pagkain ang nanay.
+# text_en = Mother has not cooked any food yet.
+1	Hindi	hindi	PART	_	Polarity=Neg	3	advmod	_	Gloss=not
+2	pa	pa	ADV	_	_	3	advmod	_	Gloss=yet
+3	nagluluto	luto	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=cooking
+4	ng	ng	ADP	_	Case=Gen	5	case	_	_
+5	pagkain	pagkain	NOUN	_	_	3	obj	_	Gloss=food
+6	ang	ang	ADP	_	Case=Nom	7	case	_	Gloss=the
+7	nanay	nanay	NOUN	_	_	3	nsubj	_	Gloss=mother|SpaceAfter=No
+8	.	.	PUNCT	_	_	3	punct	_	_
+
+# sent_id = schachter-otanes-69-1
+# text = Bumabasa ng diyaryo ang titser.
+# text_en = The teacher is reading a newspaper.
+1	Bumabasa	basa	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=reading
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	diyaryo	diyaryo	NOUN	_	_	1	obj	_	Gloss=newspaper
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	titser	titser	NOUN	_	_	1	nsubj	_	Gloss=teacher|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-69-2
+# text = Binabasa ng titser ang diyaryo.
+# text_en = The teacher is reading the newspaper.
+1	Binabasa	basa	VERB	_	Aspect=Imp|Mood=Ind|Voice=Pass	0	root	_	Gloss=being-read
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	titser	titser	NOUN	_	_	1	obj:agent	_	Gloss=teacher
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	diyaryo	diyaryo	NOUN	_	_	1	nsubj:pass	_	Gloss=newspaper|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-69-3
+# text = Naghihilik ang lolo.
+# text_en = Grandfather is snoring.
+1	Naghihilik	hilik	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=snoring
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	lolo	lolo	NOUN	_	_	1	nsubj	_	Gloss=grandfather|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-69-4
+# text = Humihinga pa ang pasyente.
+# text_en = The patient is still breathing.
+1	Humihinga	hinga	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=breathing
+2	pa	pa	ADV	_	_	1	advmod	_	Gloss=still
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	pasyente	pasyente	NOUN	_	_	1	nsubj	_	Gloss=patient|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-0
+# text = Nauuhaw ang sanggol.
+# text_en = The baby is getting thirsty.
+1	Nauuhaw	uhaw	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=getting-thirsty
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	sanggol	sanggol	NOUN	_	_	1	nsubj	_	Gloss=baby|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-1
+# text = Tumatanda ang aso.
+# text_en = The dog is growing old.
+1	Tumatanda	magtanda	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=getting-older
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	aso	aso	NOUN	_	_	1	nsubj	_	Gloss=dog|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-2
+# text = Ibinigay ng titser sa istudyante ang premyo.
+# text_en = The teacher gave the student the prize.
+1	Ibinigay	bigay	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=given
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	titser	titser	NOUN	_	_	1	obj:agent	_	Gloss=teacher
+4	sa	sa	ADP	_	Case=Dat	5	case	_	Gloss=to
+5	istudyante	istudyante	NOUN	_	_	1	obl	_	Gloss=student
+6	ang	ang	ADP	_	Case=Nom	7	case	_	Gloss=the
+7	premyo	premyo	NOUN	_	_	1	nsubj:pass	_	Gloss=prize|SpaceAfter=No
+8	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-3
+# text = Binigyan ng titser ng premyo ang istudyante.
+# text_en = The teacher gave the student a prize.
+1	Binigyan	bigay	VERB	_	Aspect=Perf|Mood=Ind|Voice=Lfoc	0	root	_	Gloss=given
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	titser	titser	NOUN	_	_	1	obj:agent	_	Gloss=teacher
+4	ng	ng	ADP	_	Case=Gen	3	case	_	_
+5	premyo	premyo	NOUN	_	_	1	iobj	_	Gloss=prize
+6	ang	ang	ADP	_	Case=Nom	7	case	_	Gloss=the
+7	istudyante	istudyante	NOUN	_	_	1	nsubj:lfoc	_	Gloss=student|SpaceAfter=No
+8	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-4
+# text = Binili ng mangingisda ang bangka.
+# text_en = The fisherman bought the boat.
+1	Binili	bili	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=bought
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	mangingisda	mangingisda	NOUN	_	_	1	obj:agent	_	Gloss=fisherman
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	bangka	bangka	NOUN	_	_	1	nsubj:pass	_	Gloss=boat|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-5
+# text = Sinalpok ng alon ang bangka.
+# text_en = The wave struck the boat.
+1	Sinalpok	salpok	VERB	_	Aspect=Perf|Mood=Ind|Voice=Lfoc	0	root	_	Gloss=struck
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	alon	alon	NOUN	_	_	1	obj:agent	_	Gloss=wave
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	bangka	bangka	NOUN	_	_	1	nsubj:lfoc	_	Gloss=boat|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-6
+# text = Bumili ng bangka ang mangingisda.
+# text_en = The fisherman bought a boat.
+1	Bumili	bili	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=bought
+2	ng	ng	ADP	_	Case=Gen	3	case	_	_
+3	bangka	bangka	NOUN	_	_	1	obj	_	Gloss=boat
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	mangingisda	mangingisda	NOUN	_	_	1	nsubj	_	Gloss=fisherman|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-70-7
+# text = Sumalpok sa bangka ang alon.
+# text_en = The wave struck the boat.
+1	Sumalpok	salpok	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=struck
+2	sa	sa	ADP	_	Case=Dat	3	case	_	Gloss=to
+3	bangka	bangka	NOUN	_	_	1	obl	_	Gloss=boat
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	alon	alon	NOUN	_	_	1	nsubj	_	Gloss=wave|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-71-0
+# text = Binalikan niya ang Maynila.
+# text_en = He returned to Manila.
+1	Binalikan	balik	VERB	_	Aspect=Perf|Mood=Ind|Voice=Lfoc	0	root	_	Gloss=returned
+2	niya	siya	PRON	_	Case=Gen|Number=Sing|Person=3|PronType=Prs	1	obj:agent	_	Gloss=he/she
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	Maynila	Maynila	PROPN	_	_	1	nsubj:lfoc	_	Gloss=Manila|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-71-1
+# text = Tinakasan niya ang bilangguan.
+# text_en = He escaped from the prison.
+1	Tinakasan	takas	VERB	_	Aspect=Perf|Mood=Ind|Voice=Lfoc	0	root	_	Gloss=escaped
+2	niya	siya	PRON	_	Case=Gen|Number=Sing|Person=3|PronType=Prs	1	obj:agent	_	Gloss=he/she
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	bilangguan	bilangguan	NOUN	_	_	1	nsubj:lfoc	_	Gloss=prison|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-95-10
+# text = Mansanas ito.
+# text_en = This is an apple.
+1	Mansanas	mansanas	NOUN	_	_	0	root	_	Gloss=apple
+2	ito	ito	PRON	_	Case=Nom|Deixis=Prox|Number=Sing|PronType=Dem	1	det	_	Gloss=this|SpaceAfter=No
+3	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-97-0
+# text = Biyudo ang maestro.
+# text_en = The teacher is a widower.
+1	Biyudo	biyudo	NOUN	_	Gender=Masc	0	root	_	Gloss=widower
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	maestro	maestro	NOUN	_	Gender=Masc	1	nsubj	_	Gloss=teacher|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-97-1
+# text = Biyuda ang maestra.
+# text_en = The teacher is a widow.
+1	Biyuda	biyuda	NOUN	_	Gender=Fem	0	root	_	Gloss=widow
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	maestra	maestra	NOUN	_	Gender=Fem	1	nsubj	_	Gloss=teacher|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-197-0
+# text = Komika si Linda.
+# text_en = Linda is funny.
+1	Komika	komika	ADJ	_	Degree=Pos|Gender=Fem	0	root	_	Gloss=funny
+2	si	si	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	Linda	Linda	PROPN	_	Gender=Fem	1	nsubj	_	Gloss=Linda|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = devos-71-0
+# text = Nakita kita.
+# text_en = I saw you.
+1	Nakita	kita	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=seen
+2	kita	ako	PRON	_	Case=Nom|Clusivity=In|Number=Dual|Person=1|PronType=Prs	1	nsubj:pass	_	Gloss=I|SpaceAfter=No
+3	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = schachter-otanes-73-0
+# text = Kinain ang pagkain.
+# text_en = The food was eaten.
+1	Kinain	kain	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=ate
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the
+3	pagkain	pagkain	NOUN	_	_	1	nsubj	_	Gloss=food|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	_
+
+# sent_id = shopen-1.8
+# text = Mga guro sila.
+# gloss = PL teacher they
+# text_en = They are teachers
+1	Mga	mga	DET	_	Number=Plur|PronType=Ind	2	det	_	Gloss=PLUR
+2	guro	guro	NOUN	_	_	0	root	_	Gloss=teacher
+3	sila	sila	PRON	_	Case=Nom|Number=Plur|Person=3|PronType=Prs	2	nsubj	_	Gloss=they|SpaceAfter=No
+4	.	.	PUNCT	_	_	2	punct	_	Gloss=.
+
+# sent_id = shopen-1.12
+# text = Malapit sa babae ang bata.
+# gloss = near OBLIQ woman TOP child
+# text_en = The child is near the woman
+1	Malapit	malapit	ADJ	_	Degree=Pos	0	root	_	Gloss=near
+2	sa	sa	ADP	_	Case=Dat	3	case	_	Gloss=to
+3	babae	babae	NOUN	_	_	1	obl	_	Gloss=woman
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	bata	bata	NOUN	_	_	1	nsubj	_	Gloss=child|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.13
+# text = Malapit kay Maria si Juan.
+# gloss = near OBLIQ Maria TOP Juan
+# text_en = Juan is near Maria
+1	Malapit	malapit	ADJ	_	Degree=Pos	0	root	_	Gloss=near
+2	kay	kay	ADP	_	Case=Dat	3	case	_	Gloss=to
+3	Maria	Maria	PROPN	_	Gender=Fem	1	obl	_	Gloss=Maria
+4	si	si	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	Juan	Juan	PROPN	_	Gender=Masc	1	nsubj	_	Gloss=Juan|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.14
+# text = Malapit sa Maynila ang Pasay City.
+# gloss = near OBL Manila TOP Pasay City
+# text_en = Pasay City is near Manila
+1	Malapit	malapit	ADJ	_	Degree=Pos	0	root	_	Gloss=near
+2	sa	sa	ADP	_	Case=Dat	3	case	_	Gloss=to
+3	Maynila	Maynila	PROPN	_	_	1	obl	_	Gloss=Manila
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	Pasay	Pasay	PROPN	_	_	1	nsubj	_	Gloss=Pasay
+6	City	City	PROPN	_	_	5	flat	_	Gloss=City|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.16a
+# text = Pinanood ko ang mga sumasayaw.
+# gloss = watch I TOP PL were.dancing
+# text_en = I watched the ones who were dancing
+# http://www.seasite.niu.edu/Tagalog/tagalog_verbs.htm
+1	Pinanood	nood	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=watch
+2	ko	ako	PRON	_	Case=Gen|Number=Sing|Person=1|PronType=Prs	1	nsubj	_	Gloss=me
+3	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+4	mga	mga	DET	_	Number=Plur|PronType=Ind	5	det	_	Gloss=PLUR
+5	sumasayaw	sayaw	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	1	obj	_	Gloss=were-dancing|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.16b
+# text = Sumasayaw ang mga tao.
+# gloss = were.dancing TOP PL person
+# text_en = The people were dancing
+1	Sumasayaw	sayaw	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=were-dancing
+2	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+3	mga	mga	DET	_	Number=Plur|PronType=Ind	4	det	_	Gloss=PLUR
+4	tao	tao	NOUN	_	_	1	nsubj	_	Gloss=person|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.24
+# text = Nagtatrabaho ang lalaki.
+# gloss = is.working TOP man
+# text_en = The man is working
+1	Nagtatrabaho	trabaho	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=working|MGloss=is.working
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	lalaki	lalaki	NOUN	_	_	1	nsubj	_	Gloss=man|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.25
+# text = Lalaki ang nagtatrabaho.
+# gloss = man TOP is.working
+# text_en = The one who is working is a man
+1	Lalaki	lalaki	NOUN	_	_	0	root	_	Gloss=man
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	nagtatrabaho	trabaho	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	1	nsubj	_	Gloss=working|MGloss=is.working|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.55a
+# text = Hindi ko siya nakita.
+# gloss = not I(AG) him(TOP) saw
+# text_en = I didn't see him
+1	Hindi	hindi	PART	_	Polarity=Neg	4	advmod	_	Gloss=not
+2	ko	ako	PRON	_	Case=Gen|Number=Sing|Person=1|PronType=Prs	4	nsubj	_	Gloss=me
+3	siya	siya	PRON	_	Case=Nom|Number=Sing|Person=3|PronType=Prs	4	obj	_	Gloss=he
+4	nakita	kita	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=saw|SpaceAfter=No
+5	.	.	PUNCT	_	_	4	punct	_	Gloss=.
+
+# sent_id = shopen-1.55b
+# text = Hindi nakita ni Pedro si Juan.
+# gloss = not saw AG Pedro TOP Juan
+# text_en = Pedro didn't see Juan
+1	Hindi	hindi	PART	_	Polarity=Neg	2	advmod	_	Gloss=not
+2	nakita	kita	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=saw
+3	ni	ni	ADP	_	Case=Gen	4	case	_	Gloss=DET
+4	Pedro	Pedro	PROPN	_	Gender=Masc	2	nsubj	_	Gloss=Pedro
+5	si	si	ADP	_	Case=Nom	6	case	_	Gloss=the
+6	Juan	Juan	PROPN	_	Gender=Masc	2	obj	_	Gloss=Juan|SpaceAfter=No
+7	.	.	PUNCT	_	_	2	punct	_	Gloss=.
+
+# sent_id = shopen-1.63
+# text = Inahit ni John ang sarili niya.
+# gloss = shaved AG John TOP self his
+# text_en = John shaved himself
+1	Inahit	ahit	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=shaved
+2	ni	ni	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	John	John	PROPN	_	Gender=Masc	1	nsubj	_	Gloss=John
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	sarili	sarili	PRON	_	PronType=Prs|Reflex=Yes	1	obj	_	Gloss=self
+6	niya	siya	PRON	_	Case=Gen|Number=Sing|Person=3|PronType=Prs	5	nmod	_	Gloss=him|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.64
+# text = Inahit ni John mismo si Bill.
+# gloss = shaved AG John EMPH TOP Bill
+# text_en = John himself shaved Bill
+1	Inahit	ahit	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=shaved
+2	ni	ni	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	John	John	PROPN	_	Gender=Masc	1	nsubj	_	Gloss=John
+4	mismo	mismo	DET	_	Gender=Masc|PronType=Emp	3	nmod	_	Gloss=EMPH
+5	si	si	ADP	_	Case=Nom	6	case	_	Gloss=the
+6	Bill	Bill	PROPN	_	Gender=Masc	1	obj	_	Gloss=Bill|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.84
+# text = Sino ang batang pumunta sa tindahan?
+# gloss = who TOP child	went OBL store
+# text_en = Who is the child who went to the store?
+1	Sino	sino	PRON	_	Case=Nom|PronType=Int	0	root	_	Gloss=who
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	batang	bata	NOUN	_	Link=Yes	1	nsubj	_	Gloss=child|MSeg=bata-ng|MGloss=child-LINK
+4	pumunta	punta	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	3	acl:relcl	_	Gloss=went
+5	sa	sa	ADP	_	Case=Dat	6	case	_	Gloss=to
+6	tindahan	tindahan	NOUN	_	_	4	obl	_	Gloss=store|SpaceAfter=No
+7	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.89a
+# text = Umuulan ba?
+# gloss = is.raining Q
+# text_en = Is it raining?
+1	Umuulan	ulan	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=is-raining
+2	ba	ba	PART	_	PartType=Int	1	advmod	_	Gloss=QUESTION|SpaceAfter=No
+3	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.89b
+# text = Oo.
+# gloss = yes
+# text_en = Yes
+1	Oo	oo	INTJ	_	Polarity=Pos	0	root	_	Gloss=yes|SpaceAfter=No
+2	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.89c
+# text = Hindi.
+# gloss = no
+# text_en = No
+1	Hindi	hindi	INTJ	_	Polarity=Pos	0	root	_	Gloss=no|SpaceAfter=No
+2	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.90a
+# text = Mayroon bang pagkain?
+# gloss = EXIST Q-LINK food
+# text_en = Is there any food?
+1	Mayroon	mayroon	VERB	_	Polarity=Pos	0	root	_	Gloss=exists
+2	bang	ba	PART	_	Link=Yes|PartType=Int	1	advmod	_	Gloss=QUESTION|MSeg=ba-ng|MGloss=QUESTION-LINK
+3	pagkain	pagkain	NOUN	_	_	1	nsubj	_	Gloss=food|SpaceAfter=No
+4	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.90b
+# text = Mayroon.
+# gloss = EXIST
+# text_en = Yes (answer to existential questions)
+1	Mayroon	mayroon	VERB	_	Polarity=Pos	0	root	_	Gloss=exists|SpaceAfter=No
+2	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.90c
+# text = Wala.
+# gloss = NEG-EXIST
+# text_en = No (answer to existential questions)
+1	Wala	wala	VERB	_	Polarity=Neg	0	root	_	Gloss=does-not-exist|SpaceAfter=No
+2	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.92
+# text = Umuulan, ano?
+# gloss = is.raining CONFIRMATION TAG
+# text_en = It's raining, isn't it?
+1	Umuulan	ulan	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=is-raining|SpaceAfter=No
+2	,	,	PUNCT	_	_	3	punct	_	Gloss=,
+3	ano	ano	PART	_	PartType=Int	1	advmod	_	Gloss=CONFIRMATION-TAG|SpaceAfter=No
+4	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.98a
+# text = Napakaano nila?
+# gloss = very.what they
+# text_en = What are they very much like?
+# "Napaka-" is an intensifying prefix meaning "very". For example, "napakabuti" means "so very good".
+# We consider "napakaano" an adjective derived from the interrogative pronoun "ano" (what).
+1	Napakaano	ano	ADJ	_	Degree=Pos|PronType=Int	0	root	_	Gloss=very-much-like|MSeg=napaka-ano|MGloss=very-what
+2	nila	sila	PRON	_	Case=Gen|Number=Plur|Person=3|PronType=Prs	1	nsubj	_	Gloss=them|SpaceAfter=No
+3	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.98b
+# text = Napakataas nila.
+# gloss = very.tall they
+# text_en = They are very tall
+1	Napakataas	taas	ADJ	_	Degree=Pos	0	root	_	Gloss=very-tall|MSeg=napaka-taas|MGloss=very-tall
+2	nila	sila	PRON	_	Case=Gen|Number=Plur|Person=3|PronType=Prs	1	nsubj	_	Gloss=them|SpaceAfter=No
+3	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.98c
+# text = Nagano ka?
+# gloss = (PERF.ACTIVE)what you
+# text_en = What did you do?
+# We consider "ano" a verb, resulting from a conversion from the pronoun "ano" (what), acquiring verbal morphology.
+1	Nagano	ano	VERB	_	Aspect=Perf|Mood=Ind|PronType=Int|Voice=Act	0	root	_	Gloss=what-did|MSeg=nag-ano|MGloss=PERF+ACTIVE-what
+2	ka	ikaw	PRON	_	Case=Nom|Number=Sing|Person=2|PronType=Prs	1	nsubj	_	Gloss=you|SpaceAfter=No
+3	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.98d
+# text = Nagsalita ka.
+# gloss = (PERF.ACTIVE)speak you
+# text_en = You spoke
+1	Nagsalita	salita	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=spoke|MSeg=nag-salita|MGloss=PERF+ACTIVE-speak
+2	ka	ikaw	PRON	_	Case=Nom|Number=Sing|Person=2|PronType=Prs	1	nsubj	_	Gloss=you|SpaceAfter=No
+3	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.98e
+# text = Naano ka?
+# gloss = (PERF.INVOL)what you
+# text_en = What happened to you?
+# We consider "ano" a verb, resulting from a conversion from the pronoun "ano" (what), acquiring verbal morphology.
+1	Naano	ano	VERB	_	Aspect=Perf|Mood=Ind|PronType=Int|Voice=Pass	0	root	_	Gloss=what-happened|MSeg=na-ano|MGloss=PERF+INVOL-what
+2	ka	ikaw	PRON	_	Case=Nom|Number=Sing|Person=2|PronType=Prs	1	nsubj	_	Gloss=you|SpaceAfter=No
+3	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.98f
+# text = Natalisod ka.
+# gloss = (PERF.INVOL)trip you
+# text_en = You tripped
+1	Natalisod	tisod	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=tripped|MSeg=na-talisod|MGloss=PERF+INVOL-trip
+2	ka	ikaw	PRON	_	Case=Nom|Number=Sing|Person=2|PronType=Prs	1	nsubj	_	Gloss=you|SpaceAfter=No
+3	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.100
+# text = Ipinansulat ni John ng liham kay Mary ang makinilya.
+# gloss = wrote.with AG John OBJ letter IO Mary TOP typewriter
+# text_en = John wrote Mary a letter on the typewriter
+1	Ipinansulat	sulat	VERB	_	Aspect=Perf|Mood=Ind|Voice=Ifoc	0	root	_	Gloss=wrote-with
+2	ni	ni	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	John	John	PROPN	_	Gender=Masc	1	obj:agent	_	Gloss=John
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET
+5	liham	liham	NOUN	_	_	1	obj	_	Gloss=letter
+6	kay	kay	ADP	_	Case=Dat	7	case	_	Gloss=to
+7	Mary	Mary	PROPN	_	Gender=Fem	1	obl	_	Gloss=Mary
+8	ang	ang	ADP	_	Case=Nom	9	case	_	Gloss=the|MGloss=PIV
+9	makinilya	makinilya	NOUN	_	_	1	nsubj:ifoc	_	Gloss=typewriter|SpaceAfter=No
+10	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.109
+# text = Nasaan ang mga pinggan?
+# gloss = where TOP PL dish
+# text_en = Where are the dishes?
+1	Nasaan	nasaan	ADV	_	PronType=Int	0	root	_	Gloss=where
+2	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+3	mga	mga	DET	_	Number=Plur|PronType=Ind	4	det	_	Gloss=PLUR
+4	pinggan	pinggan	NOUN	_	_	1	nsubj	_	Gloss=dish|SpaceAfter=No
+5	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.141
+# text = Itinanong ko kung nasaan sila.
+# gloss = asked I COMP where they
+# text_en = I asked where they were
+1	Itinanong	tanong	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=asked
+2	ko	ako	PRON	_	Case=Gen|Number=Sing|Person=1|PronType=Prs	1	nsubj	_	Gloss=me
+3	kung	kung	SCONJ	_	_	4	mark	_	Gloss=that
+4	nasaan	nasaan	ADV	_	PronType=Int	1	ccomp	_	Gloss=where
+5	sila	sila	PRON	_	Case=Nom|Number=Plur|Person=3|PronType=Prs	4	nsubj	_	Gloss=they|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.164a
+# text = Darating daw si Pedro bukas.
+# gloss = will.arrive they.say TOP Pedro tomorrow
+# text_en = They say Pedro will arrive tomorrow
+1	Darating	dating	VERB	_	Aspect=Prog|Mood=Ind|Voice=Act	0	root	_	Gloss=will-arrive
+2	daw	daw	PART	_	PartType=Nfh	1	advmod	_	Gloss=they-say
+3	si	si	ADP	_	Case=Nom	4	case	_	Gloss=the
+4	Pedro	Pedro	PROPN	_	Gender=Masc	1	nsubj	_	Gloss=Pedro
+5	bukas	bukas	ADV	_	_	1	advmod	_	Gloss=tomorrow|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.164b
+# text = Hindi daw darating si Pedro bukas.
+# gloss = NEG they.say will.arrive TOP Pedro tomorrow
+# text_en = They say Pedro won't arrive tomorrow
+1	Hindi	hindi	PART	_	Polarity=Neg	3	advmod	_	Gloss=not
+2	daw	daw	PART	_	PartType=Nfh	3	advmod	_	Gloss=they-say
+3	darating	dating	VERB	_	Aspect=Prog|Mood=Ind|Voice=Act	0	root	_	Gloss=will-arrive
+4	si	si	ADP	_	Case=Nom	5	case	_	Gloss=the
+5	Pedro	Pedro	PROPN	_	Gender=Masc	3	nsubj	_	Gloss=Pedro
+6	bukas	bukas	ADV	_	_	3	advmod	_	Gloss=tomorrow|SpaceAfter=No
+7	.	.	PUNCT	_	_	3	punct	_	Gloss=.
+
+# sent_id = shopen-1.164c
+# text = Bakit daw hindi darating si Pedro bukas?
+# gloss = why they.say NEG will.arrive TOP Pedro tomorrow
+# text_en = Why do they say Pedro won't arrive tomorrow?
+1	Bakit	bakit	ADV	_	PronType=Int	4	advmod	_	Gloss=why
+2	daw	daw	PART	_	PartType=Nfh	4	advmod	_	Gloss=they-say
+3	hindi	hindi	PART	_	Polarity=Neg	4	advmod	_	Gloss=not
+4	darating	dating	VERB	_	Aspect=Prog|Mood=Ind|Voice=Act	0	root	_	Gloss=will-arrive
+5	si	si	ADP	_	Case=Nom	6	case	_	Gloss=the
+6	Pedro	Pedro	PROPN	_	Gender=Masc	4	nsubj	_	Gloss=Pedro
+7	bukas	bukas	ADV	_	_	4	advmod	_	Gloss=tomorrow|SpaceAfter=No
+8	?	?	PUNCT	_	_	4	punct	_	Gloss=?
+
+# sent_id = shopen-1.167a
+# text = Nagtatrabaho ka na ba daw roon?
+# gloss = are.working you now Q they.say there
+# text_en = Do they say you are working there now?
+1	Nagtatrabaho	trabaho	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=working|MGloss=are.working
+2	ka	ikaw	PRON	_	Case=Nom|Number=Sing|Person=2|PronType=Prs	1	nsubj	_	Gloss=you
+3	na	na	ADV	_	PronType=Dem	1	advmod	_	Gloss=now
+4	ba	ba	PART	_	PartType=Int	1	advmod	_	Gloss=QUESTION
+5	daw	daw	PART	_	PartType=Nfh	1	advmod	_	Gloss=they-say
+6	roon	roon	ADV	_	Deixis=Remt|PronType=Dem	1	advmod	_	Gloss=there|SpaceAfter=No
+7	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.167b
+# text = Nagtatrabaho ka na daw ba roon?
+# gloss = are.working you now they.say Q there
+# text_en = Do they say you are working there now?
+1	Nagtatrabaho	trabaho	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	0	root	_	Gloss=working|MGloss=are.working
+2	ka	ikaw	PRON	_	Case=Nom|Number=Sing|Person=2|PronType=Prs	1	nsubj	_	Gloss=you
+3	na	na	ADV	_	PronType=Dem	1	advmod	_	Gloss=now
+4	daw	daw	PART	_	PartType=Nfh	1	advmod	_	Gloss=they-say
+5	ba	ba	PART	_	PartType=Int	1	advmod	_	Gloss=QUESTION
+6	roon	roon	ADV	_	Deixis=Remt|PronType=Dem	1	advmod	_	Gloss=there|SpaceAfter=No
+7	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.168
+# text = Hindi pa man lamang tuloy siya nakakapagalmusal.
+# gloss = NEG yet even just as.a.result he can.have.breakfast
+# text_en = As a result, he hasn't even been able to have breakfast yet
+1	Hindi	hindi	PART	_	Polarity=Neg	7	advmod	_	Gloss=not
+2	pa	pa	ADV	_	_	7	advmod	_	Gloss=yet
+3	man	man	ADV	_	_	7	advmod	_	Gloss=even
+4	lamang	lamang	ADV	_	_	7	advmod	_	Gloss=just
+5	tuloy	tuloy	ADV	_	_	7	advmod	_	Gloss=as-a-result
+6	siya	siya	PRON	_	Case=Nom|Number=Sing|Person=3|PronType=Prs	7	nsubj	_	Gloss=he
+7	nakakapagalmusal	almusal	VERB	_	Aspect=Imp|Mood=Pot|Voice=Act	0	root	_	Gloss=can-have-breakfast|SpaceAfter=No
+8	.	.	PUNCT	_	_	7	punct	_	Gloss=.
+
+# sent_id = shopen-1.183a
+# text = Mayroong libro sa mesa.
+# gloss = EXIST/POSS-LINK book on table
+# text_en = There is a book on the table
+1	Mayroong	mayroon	VERB	_	Link=Yes|Polarity=Pos	0	root	_	Gloss=there-is|MSeg=mayroon-g|MGloss=exists-POSSESSIVE
+2	libro	libro	NOUN	_	_	1	obj	_	Gloss=book
+3	sa	sa	ADP	_	Case=Dat	4	case	_	Gloss=to
+4	mesa	mesa	NOUN	_	_	1	obl	_	Gloss=table|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.183b
+# text = Walang libro sa mesa.
+# gloss = EXIST/POSS(NEG)-LINK book on table
+# text_en = There isn't a book on the table
+1	Walang	wala	VERB	_	Link=Yes|Polarity=Neg	0	root	_	Gloss=there-is-not|MSeg=wala-ng|MGloss=does+not+exist-POSSESSIVE
+2	libro	libro	NOUN	_	_	1	obj	_	Gloss=book
+3	sa	sa	ADP	_	Case=Dat	4	case	_	Gloss=to
+4	mesa	mesa	NOUN	_	_	1	obl	_	Gloss=table|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.183c
+# text = Mayroong libro ang bata.
+# gloss = EXIST/POSS-LINK book TOP child
+# text_en = The child has a book
+1	Mayroong	mayroon	VERB	_	Link=Yes|Polarity=Pos	0	root	_	Gloss=there-is|MSeg=mayroon-g|MGloss=exists-POSSESSIVE
+2	libro	libro	NOUN	_	_	1	obj	_	Gloss=book
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+4	bata	bata	NOUN	_	_	1	nsubj	_	Gloss=child|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.183d
+# text = Walang libro ang bata.
+# gloss = EXIST/POSS(NEG)-LINK book TOP child
+# text_en = The child doesn't have a book
+1	Walang	wala	VERB	_	Link=Yes|Polarity=Neg	0	root	_	Gloss=there-is-not|MSeg=wala-ng|MGloss=does+not+exist-POSSESSIVE
+2	libro	libro	NOUN	_	_	1	obj	_	Gloss=book
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+4	bata	bata	NOUN	_	_	1	nsubj	_	Gloss=child|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.185a
+# text = Mabuti ba ang ani?
+# The actual example in Shopen (2007) is "Mabuti a ang ani?". According to Ann Tan, "a" is a typo and it should be "ba".
+# gloss = good Q TOP harvest
+# text_en = Is the harvest good?
+1	Mabuti	mabuti	ADJ	_	Degree=Pos	0	root	_	Gloss=good
+2	ba	ba	PART	_	PartType=Int	1	advmod	_	Gloss=QUESTION
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+4	ani	ani	NOUN	_	_	1	nsubj	_	Gloss=harvest|SpaceAfter=No
+5	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.185b
+# text = Mabuti kaya ang ani?
+# gloss = good Q.SPECULATIVE TOP harvest
+# text_en = Do you suppose the harvest will be good?
+1	Mabuti	mabuti	ADJ	_	Degree=Pos	0	root	_	Gloss=good
+2	kaya	kaya	PART	_	PartType=Int	1	advmod	_	Gloss=QUESTION-SPECULATIVE
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+4	ani	ani	NOUN	_	_	1	nsubj	_	Gloss=harvest|SpaceAfter=No
+5	?	?	PUNCT	_	_	1	punct	_	Gloss=?
+
+# sent_id = shopen-1.185c
+# text = Mabuti sana ang ani.
+# gloss = good WISH TOP harvest
+# text_en = I hope the harvest is good
+1	Mabuti	mabuti	ADJ	_	Degree=Pos	0	root	_	Gloss=good
+2	sana	sana	PART	_	PartType=Des	1	advmod	_	Gloss=WISH
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+4	ani	ani	NOUN	_	_	1	nsubj	_	Gloss=harvest|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-1.186a
+# text = Huwag kayong umalis.
+# gloss = NEG you-LINK leave
+# text_en = Don't leave
+1	Huwag	huwag	AUX	_	Mood=Imp|Polarity=Neg	3	aux	_	Gloss=do-not
+2	kayong	kayo	PRON	_	Case=Nom|Link=Yes|Number=Plur|Person=2|PronType=Prs	3	nsubj	_	Gloss=you|MSeg=kayo-ng|MGloss=you-LINK
+3	umalis	alis	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=leave|SpaceAfter=No
+4	.	.	PUNCT	_	_	3	punct	_	Gloss=.
+
+# sent_id = shopen-1.186b
+# text = Huwag siyang pumarito.
+# gloss = NEG he-LINK come.here
+# text_en = He shouldn't come here
+1	Huwag	huwag	AUX	_	Mood=Imp|Polarity=Neg	3	aux	_	Gloss=do-not
+2	siyang	siya	PRON	_	Case=Nom|Link=Yes|Number=Sing|Person=3|PronType=Prs	3	nsubj	_	Gloss=he|MSeg=siya-ng|MGloss=he-LINK
+3	pumarito	parito	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=come-here|SpaceAfter=No
+4	.	.	PUNCT	_	_	3	punct	_	Gloss=.
+
+# sent_id = shopen-3.111a
+# text = Magaalis ang babae ng bigas sa sako para sa bata.
+# gloss = AP-FUT-take.out PIV woman OBJ rice DIR sack for BEN child
+# text_en = The woman will take some rice out of a/the sack for a/the child
+# AP = actor pivot; PIV = pivot marker
+# http://www.seasite.niu.edu/Tagalog/tagalog_verbs.htm
+1	Magaalis	alis	VERB	_	Aspect=Prog|Mood=Ind|Voice=Act	0	root	_	Gloss=will-take-out|MSeg=mag-a-alis|MGloss=AP-FUT-take.out
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	babae	babae	NOUN	_	_	1	nsubj	_	Gloss=woman
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET
+5	bigas	bigas	NOUN	_	_	1	obj	_	Gloss=rice
+6	sa	sa	ADP	_	Case=Dat	7	case	_	Gloss=to
+7	sako	sako	NOUN	_	_	1	obl	_	Gloss=sack
+8	para	para	ADP	_	_	10	case	_	Gloss=for
+9	sa	sa	ADP	_	Case=Dat	10	case	_	Gloss=to
+10	bata	bata	NOUN	_	_	1	obl	_	Gloss=child|SpaceAfter=No
+11	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.111b
+# text = Aalisin ng babae ang bigas sa sako para sa bata.
+# gloss = FUT-take.out-OP ACT woman PIV rice DIR sack for BEN child
+# text_en = A/the woman will take the rice out of a/the sack for a/the child
+# OP = object pivot; PIV = pivot marker
+1	Aalisin	alis	VERB	_	Aspect=Prog|Mood=Ind|Voice=Pass	0	root	_	Gloss=will-take-out|MSeg=a-alis-in|MGloss=FUT-take.out-OP
+2	ng	ng	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	babae	babae	NOUN	_	_	1	obj:agent	_	Gloss=woman
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	bigas	bigas	NOUN	_	_	1	nsubj:pass	_	Gloss=rice
+6	sa	sa	ADP	_	Case=Dat	7	case	_	Gloss=to
+7	sako	sako	NOUN	_	_	1	obl	_	Gloss=sack
+8	para	para	ADP	_	_	10	case	_	Gloss=for
+9	sa	sa	ADP	_	Case=Dat	10	case	_	Gloss=to
+10	bata	bata	NOUN	_	_	1	obl	_	Gloss=child|SpaceAfter=No
+11	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.111c
+# text = Aalisan ng babae ng bigas ang sako para sa bata.
+# gloss = FUT-take.out-DP ACT woman OBJ rice PIV sack BEN child
+# text_en = A/the woman will take some rice out of the sack for a/the child
+# DP = directional pivot; PIV = pivot marker
+1	Aalisan	alis	VERB	_	Aspect=Prog|Mood=Ind|Voice=Lfoc	0	root	_	Gloss=will-take-out|MSeg=a-alis-an|MGloss=FUT-take.out-DP
+2	ng	ng	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	babae	babae	NOUN	_	_	1	obj:agent	_	Gloss=woman
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET
+5	bigas	bigas	NOUN	_	_	1	iobj:patient	_	Gloss=rice
+6	ang	ang	ADP	_	Case=Nom	7	case	_	Gloss=the|MGloss=PIV
+7	sako	sako	NOUN	_	_	1	nsubj:lfoc	_	Gloss=sack
+8	para	para	ADP	_	_	10	case	_	Gloss=for
+9	sa	sa	ADP	_	Case=Dat	10	case	_	Gloss=to
+10	bata	bata	NOUN	_	_	1	obl	_	Gloss=child|SpaceAfter=No
+11	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.111d
+# text = Ipagaalis ng babae ng bigas sa sako ang bata.
+# gloss = BP-FUT-take.out ACT woman OBJ rice DIR sack PIV child
+# text_en = A/the woman will take some rice out of a/the sack for the child
+# BP = benefactive pivot; PIV = pivot marker
+1	Ipagaalis	alis	VERB	_	Aspect=Prog|Mood=Ind|Voice=Bfoc	0	root	_	Gloss=will-take-out|MSeg=Ipag-a-alis|MGloss=BP-FUT-take.out
+2	ng	ng	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	babae	babae	NOUN	_	_	1	obj:agent	_	Gloss=woman
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET
+5	bigas	bigas	NOUN	_	_	1	iobj:patient	_	Gloss=rice
+6	sa	sa	ADP	_	Case=Dat	7	case	_	Gloss=to
+7	sako	sako	NOUN	_	_	1	obl	_	Gloss=sack
+8	ang	ang	ADP	_	Case=Nom	9	case	_	Gloss=the|MGloss=PIV
+9	bata	bata	NOUN	_	_	1	nsubj:bfoc	_	Gloss=child|SpaceAfter=No
+10	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.112a
+# text = Matalino ang lalaking bumasa ng diyaryo.
+# gloss = intelligent PIV man-LINK [AP]-read OBJ newspaper
+# text_en = The man who read a newspaper is intelligent
+1	Matalino	matalino	ADJ	_	Degree=Pos	0	root	_	Gloss=intelligent
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	lalaking	lalaki	NOUN	_	Link=Yes	1	nsubj	_	Gloss=man|MSeg=lalaki-ng|man-LINK
+4	bumasa	basa	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	3	acl:relcl	_	Gloss=read|MSeg=b[um]asa|MGloss=[AP]-read
+5	ng	ng	ADP	_	Case=Gen	6	case	_	Gloss=DET
+6	diyaryo	diyaryo	NOUN	_	_	4	obj	_	Gloss=newspaper|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.112b
+# text = Interesante ang diyaryong binasa ng lalaki.
+# gloss = interesting PIV newspaper-LINK [PERF]-read-OP ACT man
+# text_en = The newspaper that the man read is interesting
+1	Interesante	interesante	ADJ	_	Degree=Pos	0	root	_	Gloss=interesting
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	diyaryong	diyaryo	NOUN	_	Link=Yes	1	nsubj	_	Gloss=newspaper|MSeg=diyaryo-ng|MGloss=newspaper-LINK
+4	binasa	basa	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	3	acl:relcl	_	Gloss=be-read|MSeg=b[in]asa-0|MGloss=[PERF]-read-OP
+5	ng	ng	ADP	_	Case=Gen	6	case	_	Gloss=DET
+6	lalaki	lalaki	NOUN	_	_	4	obj	_	Gloss=man|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.114a
+# text = Susulat lahat ang mga bata ng mga liham.
+# source = Schachter and Otanes, 1972:147-8
+# gloss = AP-FUT-write all PIV PL child OBJ PL letter
+# text_en = All the children will write letters
+1	Susulat	sulat	VERB	_	Aspect=Prog|Mood=Ind|Voice=Act	0	root	_	Gloss=will-write|MSeg=0-su-sulat|MGloss=AP-FUT-write
+2	lahat	lahat	DET	_	PronType=Tot	5	det	_	Gloss=all
+3	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+4	mga	mga	DET	_	Number=Plur|PronType=Ind	5	det	_	Gloss=PLUR
+5	bata	bata	NOUN	_	_	1	nsubj	_	Gloss=child
+6	ng	ng	ADP	_	Case=Gen	8	case	_	Gloss=DET
+7	mga	mga	DET	_	Number=Plur|PronType=Ind	8	det	_	Gloss=PLUR
+8	liham	liham	NOUN	_	_	1	obj	_	Gloss=letter|SpaceAfter=No
+9	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.114b
+# text = Susulatin lahat ng mga bata ang mga liham.
+# source = Schachter and Otanes, 1972:147-8
+# gloss = FUT-write-OP all ACT PL child PIV PL letter
+# text_en = The/some children will write all the letters
+1	Susulatin	sulat	VERB	_	Aspect=Prog|Mood=Ind|Voice=Pass	0	root	_	Gloss=will-be-written|MSeg=su-sulat-in|MGloss=FUT-write-OP
+2	lahat	lahat	DET	_	PronType=Tot	8	det	_	Gloss=all
+3	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET
+4	mga	mga	DET	_	Number=Plur|PronType=Ind	5	det	_	Gloss=PLUR
+5	bata	bata	NOUN	_	_	1	obj:agent	_	Gloss=child
+6	ang	ang	ADP	_	Case=Nom	8	case	_	Gloss=the|MGloss=PIV
+7	mga	mga	DET	_	Number=Plur|PronType=Ind	8	det	_	Gloss=PLUR
+8	liham	liham	NOUN	_	_	1	nsubj:pass	_	Gloss=letter|SpaceAfter=No
+9	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.115a
+# text = Nagalala ang lolo sa kaniyang sarili.
+# source = Schachter, 1977:292
+# gloss = AP-worry PIV grandfather DIR his-LINK self
+# text_en = Grandfather worried about himself
+1	Nagalala	alala	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=worried|MSeg=nag-alala|MGloss=AP-worry
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	lolo	lolo	NOUN	_	_	1	nsubj	_	Gloss=grandfather
+4	sa	sa	ADP	_	Case=Dat	6	case	_	Gloss=to
+5	kaniyang	siya	PRON	_	Case=Dat|Link=Yes|Number=Sing|Person=3|PronType=Prs	6	nmod	_	Gloss=him|MSeg=kaniya-ng|MGloss=his-LINK
+6	sarili	sarili	PRON	_	PronType=Prs|Reflex=Yes	1	obl	_	Gloss=self|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.115b
+# text = Inalala ng lolo ang kaniyang sarili.
+# source = Schachter, 1977:292
+# gloss = PERF-worry-OP ACT grandfather PIV his-LINK self
+# text_en = Grandfather worried about himself
+1	Inalala	alala	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=worried|MSeg=in-alala-0|MGloss=PERF-worry-OP
+2	ng	ng	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	lolo	lolo	NOUN	_	_	1	obj:agent	_	Gloss=grandfather
+4	ang	ang	ADP	_	Case=Nom	6	case	_	Gloss=the|MGloss=PIV
+5	kaniyang	siya	PRON	_	Case=Dat|Link=Yes|Number=Sing|Person=3|PronType=Prs	6	nmod	_	Gloss=him|MSeg=kaniya-ng|MGloss=his-LINK
+6	sarili	sarili	PRON	_	PronType=Prs|Reflex=Yes	1	nsubj	_	Gloss=self|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.117a
+# text = Iniabot niya sa bata ang kaniyang sariling larawan.
+# gloss = PERF-OP-hand he(ACT) DIR child PIV his-LINK self-LINK picture
+# text_en = He[i] handed the child[j] a picture of himself[i,j]
+1	Iniabot	abot	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=handed|MSeg=in-i-abot|MGloss=PERF-OP-hand
+2	niya	siya	PRON	_	Case=Gen|Number=Sing|Person=3|PronType=Prs	1	obj:agent	_	Gloss=him|MGloss=he(ACT)
+3	sa	sa	ADP	_	Case=Dat	4	case	_	Gloss=to
+4	bata	bata	NOUN	_	_	1	obl	_	Gloss=child
+5	ang	ang	ADP	_	Case=Nom	8	case	_	Gloss=the|MGloss=PIV
+6	kaniyang	siya	PRON	_	Case=Dat|Link=Yes|Number=Sing|Person=3|PronType=Prs	7	nmod	_	Gloss=him|MSeg=kaniya-ng|MGloss=his-LINK
+7	sariling	sarili	PRON	_	Link=Yes|PronType=Prs|Reflex=Yes	8	nmod	_	Gloss=self|MSeg=sarili-ng|MGloss=self-LINK
+8	larawan	larawan	NOUN	_	_	1	nsubj:pass	_	Gloss=picture|SpaceAfter=No
+9	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.117b
+# text = Tumanggap ang Rosa ng sulat para sa bata sa kaniyang sarili.
+# gloss = [AP]-receive PIV Rosa OBJ letter BEN BEN child DIR her-LINK self
+# text_en = Rosa[i] received a letter for the child[j] from herself[i]/him-herself[j]
+1	Tumanggap	tanggap	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=received|MSeg=t[um]anggap|MGloss=[AP]-receive
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	Rosa	Rosa	PROPN	_	Gender=Fem	1	nsubj	_	Gloss=Rosa
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET
+5	sulat	sulat	NOUN	_	_	1	obj	_	Gloss=letter
+6	para	para	ADP	_	_	8	case	_	Gloss=for|MGloss=BEN
+7	sa	sa	ADP	_	Case=Dat	8	case	_	Gloss=to
+8	bata	bata	NOUN	_	_	1	obl	_	Gloss=child
+9	sa	sa	ADP	_	Case=Dat	11	case	_	Gloss=from
+10	kaniyang	siya	PRON	_	Case=Dat|Link=Yes|Number=Sing|Person=3|PronType=Prs	11	nmod	_	Gloss=him|MSeg=kaniya-ng|MGloss=his-LINK
+11	sarili	sarili	PRON	_	PronType=Prs|Reflex=Yes	1	obl	_	Gloss=self|SpaceAfter=No
+12	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.118a
+# text = Magbigay ka sa kaniya ng kape.
+# source = Schachter, 1977
+# gloss = AP-give you(PIV) DIR him OBJ coffee
+# text_en = Give him some coffee!
+1	Magbigay	bigay	VERB	_	Mood=Imp|Voice=Act	0	root	_	Gloss=give|MSeg=mag-bigay|MGloss=AP-give
+2	ka	ikaw	PRON	_	Case=Nom|Number=Sing|Person=2|PronType=Prs	1	nsubj	_	Gloss=you|MGloss=you(PIV)
+3	sa	sa	ADP	_	Case=Dat	4	case	_	Gloss=to|MGloss=DIR
+4	kaniya	siya	PRON	_	Case=Dat|Number=Sing|Person=3|PronType=Prs	1	obl	_	Gloss=him
+5	ng	ng	ADP	_	Case=Gen	6	case	_	Gloss=DET
+6	kape	kape	NOUN	_	_	1	obj	_	Gloss=coffee|SpaceAfter=No
+7	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.118b
+# text = Bigyan mo siya ng kape.
+# source = Schachter, 1977
+# gloss = give-DP you(ACT) him(PIV) OBJ coffee
+# text_en = Give him some coffee!
+1	Bigyan	bigay	VERB	_	Mood=Imp|Voice=Lfoc	0	root	_	Gloss=give|MSeg=bigy-an|MGloss=give-DP
+2	mo	ikaw	PRON	_	Case=Gen|Number=Sing|Person=2|PronType=Prs	1	obj:agent	_	Gloss=you|MGloss=you(ACT)
+3	siya	siya	PRON	_	Case=Nom|Number=Sing|Person=3|PronType=Prs	1	nsubj:lfoc	_	Gloss=he|MGloss=him(PIV)
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET
+5	kape	kape	NOUN	_	_	1	iobj:patient	_	Gloss=coffee|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.119a
+# text = Walisan natin ang sahig.
+# source = Schachter and Otanes, 1972:407-9
+# gloss = Sweep-OP us(DU.ACT) PIV floor
+# text_en = Let's sweep the floor
+1	Walisan	walis	VERB	_	Mood=Imp|Voice=Pass	0	root	_	Gloss=sweep|MSeg=walis-an|MGloss=sweep-OP
+2	natin	ako	PRON	_	Case=Gen|Clusivity=In|Number=Plur|Person=1|PronType=Prs	1	obj:agent	_	Gloss=us|MGloss=us(DU.ACT)
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+4	sahig	sahig	NOUN	_	_	1	nsubj:pass	_	Gloss=floor|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.119b
+# text = Walisan nila ang sahig.
+# source = Schachter and Otanes, 1972:407-9
+# gloss = Sweep-OP they(ACT) PIV floor
+# text_en = I want them to sweep the floor
+1	Walisan	walis	VERB	_	Mood=Imp|Voice=Pass	0	root	_	Gloss=sweep|MSeg=walis-an|MGloss=sweep-OP
+2	nila	sila	PRON	_	Case=Gen|Number=Plur|Person=3|PronType=Prs	1	obj:agent	_	Gloss=them|MGloss=they(ACT)
+3	ang	ang	ADP	_	Case=Nom	4	case	_	Gloss=the|MGloss=PIV
+4	sahig	sahig	NOUN	_	_	1	nsubj:pass	_	Gloss=floor|SpaceAfter=No
+5	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.120a
+# text = Nagatubili siyang humiram ng pera sa banko.
+# source = Schachter, 1972
+# gloss = AP-hesitate he(PIV)-LINK [AP]-borrow OBJ money DIR bank
+# text_en = He hesitated to borrow money from a/the bank
+1	Nagatubili	atubili	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=hesitated|MSeg=nag-atubili|MGloss=AP-hesitate
+2	siyang	siya	PRON	_	Case=Nom|Link=Yes|Number=Sing|Person=3|PronType=Prs	1	nsubj	_	Gloss=he|MSeg=siya-ng|MGloss=he(PIV)-LINK
+3	humiram	hiram	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	1	xcomp	_	Gloss=borrow|MSeg=h[um]iram|MGloss=[AP]-borrow
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET|MGloss=OBJ
+5	pera	pera	NOUN	_	_	3	obj	_	Gloss=money
+6	sa	sa	ADP	_	Case=Dat	7	case	_	Gloss=to|MGloss=DIR
+7	banko	banko	NOUN	_	_	3	obl	_	Gloss=bank|SpaceAfter=No
+8	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.120b
+# text = Nagatubili siyang hiramin ang pera sa banko.
+# source = Schachter, 1972
+# gloss = AP-hesitate he(PIV)-LINK borrow-OP PIV money DIR bank
+# text_en = He hesitated to borrow the money from the bank
+1	Nagatubili	atubili	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=hesitated|MSeg=nag-atubili|MGloss=AP-hesitate
+2	siyang	siya	PRON	_	Case=Nom|Link=Yes|Number=Sing|Person=3|PronType=Prs	1	nsubj	_	Gloss=he|MSeg=siya-ng|MGloss=he(PIV)-LINK
+3	hiramin	hiram	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	1	xcomp	_	Gloss=borrow|MSeg=hiram-in|MGloss=borrow-OP
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	pera	pera	NOUN	_	_	3	nsubj:pass	_	Gloss=money
+6	sa	sa	ADP	_	Case=Dat	7	case	_	Gloss=to|MGloss=DIR
+7	banko	banko	NOUN	_	_	3	obl	_	Gloss=bank|SpaceAfter=No
+8	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.121a
+# text = Gusto ni Juan suriin siya ng doktor.
+# source = Schachter, 1977:295
+# gloss = want ACT John(LINK) examine-OP he(PIV) ACT doctor
+# text_en = John wants the doctor to examine him
+# The verb gusto seems to have only the patient focus voice. But here it appears in its base form, without aspectual inflection.
+# https://www.tagalog.com/words/gusto.php suggests that "gusto" does not inflect.
+# The patient focus means that the agent (which is the only argument) must appear in the genitive case.
+1	Gusto	gusto	VERB	_	Aspect=Hab|Voice=Pass	0	root	_	Gloss=want
+2	ni	ni	ADP	_	Case=Gen	3	case	_	Gloss=DET
+3	Juan	Juan	PROPN	_	Gender=Masc|Link=Yes	1	obj:agent	_	Gloss=Juan|MGloss=John(LINK)
+4	suriin	suri	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	1	ccomp	_	Gloss=examine|MSeg=suri-in|MGloss=examine-OP
+5	siya	siya	PRON	_	Case=Nom|Number=Sing|Person=3|PronType=Prs	4	nsubj:pass	_	Gloss=he|MGloss=he(PIV)
+6	ng	ng	ADP	_	Case=Gen	7	case	_	Gloss=DET|MGloss=ACT
+7	doktor	doktor	NOUN	_	_	4	obj:agent	_	Gloss=doctor|SpaceAfter=No
+8	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.122a
+# text = Masagwa ang tumatanda.
+# gloss = disagreeable PIV [AP]-IMPERF-become-old
+# text_en = It is disagreeable to become old
+1	Masagwa	masagwa	ADJ	_	Degree=Pos	0	root	_	Gloss=disagreeable
+2	ang	ang	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	tumatanda	tatanda	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	1	csubj	_	Gloss=to-become-old|MGloss=[AP]-IMPERF-become-old|MSeg=t[um]a-tanda|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.122b
+# text = Gusto niyang gumanda.
+# gloss = want he/she(ACT)-LINK [AP]-beautiful
+# text_en = She wants to become beautiful
+1	Gusto	gusto	VERB	_	Aspect=Hab|Voice=Pass	0	root	_	Gloss=want
+2	niyang	siya	PRON	_	Case=Gen|Link=Yes|Number=Sing|Person=3|PronType=Prs	1	obj:agent	_	Gloss=him|MSeg=niya-ng|MGloss=he/she(ACT)-LINK
+3	gumanda	ganda	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	1	xcomp	_	Gloss=become-beautiful|MGloss=[AP]-beautiful|MSeg=g[um]anda|SpaceAfter=No
+4	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.122c
+# text = Gusto kong tumanggap ng gantimpala.
+# gloss = want I(ACT)-LINK [AP]-receive OBJ prize
+# text_en = I want to be the recipient of the prize
+1	Gusto	gusto	VERB	_	Aspect=Hab|Voice=Pass	0	root	_	Gloss=want
+2	kong	ako	PRON	_	Case=Gen|Link=Yes|Number=Sing|Person=1|PronType=Prs	1	obj:agent	_	Gloss=me|MSeg=ko-ng|MGloss=I(ACT)-LINK
+3	tumanggap	tanggap	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	1	xcomp	_	Gloss=received|MSeg=t[um]anggap|MGloss=[AP]-receive
+4	ng	ng	ADP	_	Case=Gen	5	case	_	Gloss=DET|MGloss=OBJ
+5	gantimpala	gantimpala	NOUN	_	_	3	obj	_	Gloss=prize|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.122d
+# text = Gusto kong matanggap ang gantimpala.
+# gloss = want I(ACT)-LINK OP-receive PIV prize
+# text_en = I want to receive the prize
+1	Gusto	gusto	VERB	_	Aspect=Hab|Voice=Pass	0	root	_	Gloss=want
+2	kong	ako	PRON	_	Case=Gen|Link=Yes|Number=Sing|Person=1|PronType=Prs	1	obj:agent	_	Gloss=me|MSeg=ko-ng|MGloss=I(ACT)-LINK
+3	matanggap	tanggap	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	1	xcomp	_	Gloss=received|MSeg=ma-tanggap|MGloss=OP-receive
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	gantimpala	gantimpala	NOUN	_	_	3	nsubj:pass	_	Gloss=prize|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.123
+# text = Ayaw kong mamatay sa Maynila.
+# gloss = not.want I(ACT)-LINK AP-die DIR Manila
+# text_en = I don't want to die in Manila
+1	Ayaw	ayaw	VERB	_	Aspect=Hab|Voice=Pass	0	root	_	Gloss=not-want|MGloss=not.want
+2	kong	ako	PRON	_	Case=Gen|Link=Yes|Number=Sing|Person=1|PronType=Prs	1	obj:agent	_	Gloss=me|MSeg=ko-ng|MGloss=I(ACT)-LINK
+3	mamatay	patay	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	1	xcomp	_	Gloss=die|MSeg=ma-matay|MGloss=AP-die
+4	sa	sa	ADP	_	Case=Dat	5	case	_	Gloss=to|MGloss=DIR
+5	Maynila	Maynila	PROPN	_	_	3	obl	_	Gloss=Manila|SpaceAfter=No
+6	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.124a
+# text = Binisita ni Juan ang hari nang nagiisa.
+# gloss = [PERF]-visit(OP) ACT Juan PIV king ADV AP.IMPERF-one
+# text_en = Juan visited the king alone [either Juan or the king is alone]
+1	Binisita	bisita	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=visited|MSeg=b[in]isita|MGloss=[PERF]-visit(OP)
+2	ni	ni	ADP	_	Case=Gen	3	case	_	Gloss=DET|MGloss=ACT
+3	Juan	Juan	PROPN	_	Gender=Masc	1	obj:agent	_	Gloss=Juan|MGloss=John(LINK)
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	hari	hari	NOUN	_	_	1	nsubj:pass	_	Gloss=king
+6	nang	nang	SCONJ	_	_	7	mark	_	Gloss=while|MGloss=ADV
+7	nagiisa	iisa	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	1	advcl	_	Gloss=being-alone|MGloss=AP.IMPERF-one|MSeg=nag-iisa|SpaceAfter=No
+8	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.124b
+# text = Bumisita si Juan sa hari nang nagiisa.
+# gloss = [AP.PERF]-visit PIV Juan DAT king ADV AP.IMPERF-one
+# text_en = Juan visited the king alone [only Juan is alone]
+1	Bumisita	bisita	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=visited|MSeg=b[um]isita|MGloss=[AP.PERF]-visit
+2	si	si	ADP	_	Case=Nom	3	case	_	Gloss=the|MGloss=PIV
+3	Juan	Juan	PROPN	_	Gender=Masc	1	nsubj	_	Gloss=Juan|MGloss=John(LINK)
+4	sa	sa	ADP	_	Case=Dat	5	case	_	Gloss=to|MGloss=DAT
+5	hari	hari	NOUN	_	_	1	obl	_	Gloss=king
+6	nang	nang	SCONJ	_	_	7	mark	_	Gloss=while|MGloss=ADV
+7	nagiisa	iisa	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	1	advcl	_	Gloss=being-alone|MGloss=AP.IMPERF-one|MSeg=nag-iisa|SpaceAfter=No
+8	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.124c
+# text = Hinuli ng polis ang mgananakaw nang pumapasok sa banko.
+# gloss = PERF-catch(OP) ACT police PIV thief ADV AP.IMPERF:enter DAT bank
+# text_en = The police caught the thief entering the bank [either thief or police are entering]
+1	Hinuli	huli	VERB	_	Aspect=Perf|Mood=Ind|Voice=Pass	0	root	_	Gloss=caught|MSeg=h[in]uli|MGloss=PERF-catch(OP)
+2	ng	ng	ADP	_	Case=Gen	3	case	_	Gloss=DET|MGloss=ACT
+3	polis	polis	NOUN	_	_	1	obj:agent	_	Gloss=police
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	mgananakaw	mgananakaw	NOUN	_	_	1	nsubj:pass	_	Gloss=thief
+6	nang	nang	SCONJ	_	_	7	mark	_	Gloss=while|MGloss=ADV
+7	pumapasok	pasok	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	1	advcl	_	Gloss=entering|MSeg=p[um]a-pasok|MGloss=[AP]-IMPERF-enter
+8	sa	sa	ADP	_	Case=Dat	9	case	_	Gloss=to|MGloss=DAT
+9	banko	banko	NOUN	_	_	7	obl	_	Gloss=bank|SpaceAfter=No
+10	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+
+# sent_id = shopen-3.124d
+# text = Nanghuli ng mgananakaw ang polis nang pumapasok sa banko.
+# gloss = AP.PERF-catch OBJ thief PIV police ADV AV.IMPERF:enter DAT bank
+# text_en = The police caught the thief entering the bank [either thief or police are entering]
+1	Nanghuli	huli	VERB	_	Aspect=Perf|Mood=Ind|Voice=Act	0	root	_	Gloss=caught|MSeg=nang-huli|MGloss=AP.PERF-catch
+2	ng	ng	ADP	_	Case=Gen	3	case	_	Gloss=DET|MGloss=OBJ
+3	mgananakaw	mgananakaw	NOUN	_	_	1	obj	_	Gloss=thief
+4	ang	ang	ADP	_	Case=Nom	5	case	_	Gloss=the|MGloss=PIV
+5	polis	polis	NOUN	_	_	1	nsubj	_	Gloss=police
+6	nang	nang	SCONJ	_	_	7	mark	_	Gloss=while|MGloss=ADV
+7	pumapasok	pasok	VERB	_	Aspect=Imp|Mood=Ind|Voice=Act	1	advcl	_	Gloss=entering|MSeg=p[um]a-pasok|MGloss=[AP]-IMPERF-enter
+8	sa	sa	ADP	_	Case=Dat	9	case	_	Gloss=to|MGloss=DAT
+9	banko	banko	NOUN	_	_	7	obl	_	Gloss=bank|SpaceAfter=No
+10	.	.	PUNCT	_	_	1	punct	_	Gloss=.
+