{ "cells": [ { "cell_type": "code", "execution_count": 9, "id": "955a0385-29fb-47dc-b012-729e49570594", "metadata": {}, "outputs": [], "source": [ "from new_experiment.utils.get_spacy_model_name import *\n", "\n", "from call_experiment_stats import *\n", "\n", "from new_experiment.utils.property_helper import PropertyHelper\n", "from new_experiment.utils.get_spacy_model_name import get_spacy_model_name\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 10, "id": "9f5e44a6-f211-4b61-8cb4-5636c7672c6a", "metadata": {}, "outputs": [], "source": [ "COMMANDS = ['run_word_wer_classic_pipeline', 'run_word_wer_embedding_pipeline', 'run_spacy_dep_tag_wer_pipeline',\n", " 'run_spacy_ner_wer_pipeline', 'run_spacy_pos_wer_pipeline']\n", "LANGUAGES = ['nl', 'fr', 'de', 'it', 'pl', 'es', 'en']\n", "WHISPER_ASR_MODEL = ['tiny', 'base', 'small', 'medium', 'large-v2']\n", "DATASETS = ['google_fleurs', 'minds14', 'voxpopuli']\n", "FULL_DATASET_NAMES = []\n", "for itt in LANGUAGES:\n", " for it in DATASETS:\n", " FULL_DATASET_NAMES.append(f'{itt}_{it}')\n", "\n", "FULL_LANGUAGE_MODELS = [f'whisper_{it}' for it in WHISPER_ASR_MODEL]" ] }, { "cell_type": "code", "execution_count": 18, "id": "d2465ceb-7439-4fa5-adf8-e95d7e6106b9", "metadata": {}, "outputs": [], "source": [ "0vals = dict()\n", "with open('metrics.log', 'r') as reader:\n", " lines = reader.read().splitlines(keepends=False)\n", " for line in lines:\n", " # print(line)\n", " words = line.split()\n", " key = f'{words[0]}_{words[1]}'\n", " # print(key)\n", " vals[key] = float(words[2])\n", "# vals" ] }, { "cell_type": "code", "execution_count": 19, "id": "22d84451-b7e3-4dba-9758-068dae23ace4", "metadata": {}, "outputs": [], "source": [ "spacy_ner = [\n", " [vals.get(f'{dataset}_{PropertyHelper.ner_metrics(model, get_spacy_model_name(dataset[:2]))}', -1.0) for model in FULL_LANGUAGE_MODELS]\n", " for dataset in FULL_DATASET_NAMES\n", "]\n", "spacy_pos = [\n", " [vals.get(f'{dataset}_{PropertyHelper.pos_metrics(model, get_spacy_model_name(dataset[:2]))}', -1.0) for model in FULL_LANGUAGE_MODELS]\n", " for dataset in FULL_DATASET_NAMES\n", "]\n", "spacy_dep = [\n", " [vals.get(f'{dataset}_{PropertyHelper.pos_metrics(model, get_spacy_model_name(dataset[:2]))}', -1.0) for model in FULL_LANGUAGE_MODELS]\n", " for dataset in FULL_DATASET_NAMES\n", "]\n", "word_wer_classic_metrics = [\n", " [vals.get(f'{dataset}_{PropertyHelper.word_wer_classic_metrics(model)}', -1.0) for model in FULL_LANGUAGE_MODELS]\n", " for dataset in FULL_DATASET_NAMES\n", "]\n", "\n", "# for dataset in FULL_DATASET_NAMES:\n", "# for model in FULL_LANGUAGE_MODELS:\n", "# get_stats_for_classic_wer(dataset, PropertyHelper.word_wer_classic_metrics(model))\n", "\n", "# for dataset in FULL_DATASET_NAMES:\n", "# for model in FULL_LANGUAGE_MODELS:\n", "# get_stats_for_soft_wer(dataset, PropertyHelper.word_wer_embeddings_metrics(model))\n", "\n", "# for dataset in FULL_DATASET_NAMES:\n", "# for model in FULL_LANGUAGE_MODELS:\n", "# get_stats_for_embedding_wer(dataset, PropertyHelper.word_wer_embeddings_metrics(model))\n" ] }, { "cell_type": "code", "execution_count": 20, "id": "45fd851c-644f-48e6-b711-5bd312404b8b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>tiny</th>\n", " <th>base</th>\n", " <th>small</th>\n", " <th>medium</th>\n", " <th>large-v2</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>nl_google_fleurs</th>\n", " <td>0.316124</td>\n", " <td>0.230845</td>\n", " <td>0.186936</td>\n", " <td>0.170150</td>\n", " <td>0.165057</td>\n", " </tr>\n", " <tr>\n", " <th>nl_minds14</th>\n", " <td>0.463084</td>\n", " <td>0.409993</td>\n", " <td>0.360934</td>\n", " <td>0.331613</td>\n", " <td>0.324172</td>\n", " </tr>\n", " <tr>\n", " <th>nl_voxpopuli</th>\n", " <td>0.215158</td>\n", " <td>0.178716</td>\n", " <td>0.132960</td>\n", " <td>0.118042</td>\n", " <td>0.139958</td>\n", " </tr>\n", " <tr>\n", " <th>fr_google_fleurs</th>\n", " <td>0.264291</td>\n", " <td>0.193436</td>\n", " <td>0.177302</td>\n", " <td>0.147464</td>\n", " <td>0.141276</td>\n", " </tr>\n", " <tr>\n", " <th>fr_minds14</th>\n", " <td>0.466860</td>\n", " <td>0.468822</td>\n", " <td>0.471754</td>\n", " <td>0.444854</td>\n", " <td>0.485090</td>\n", " </tr>\n", " <tr>\n", " <th>fr_voxpopuli</th>\n", " <td>0.161386</td>\n", " <td>0.131144</td>\n", " <td>0.113097</td>\n", " <td>0.099114</td>\n", " <td>0.111776</td>\n", " </tr>\n", " <tr>\n", " <th>de_google_fleurs</th>\n", " <td>0.316175</td>\n", " <td>0.257454</td>\n", " <td>0.234163</td>\n", " <td>0.239750</td>\n", " <td>0.236715</td>\n", " </tr>\n", " <tr>\n", " <th>de_minds14</th>\n", " <td>0.435681</td>\n", " <td>0.425712</td>\n", " <td>0.412896</td>\n", " <td>0.398617</td>\n", " <td>0.398762</td>\n", " </tr>\n", " <tr>\n", " <th>de_voxpopuli</th>\n", " <td>0.200245</td>\n", " <td>0.155502</td>\n", " <td>0.133251</td>\n", " <td>0.116949</td>\n", " <td>0.156371</td>\n", " </tr>\n", " <tr>\n", " <th>it_google_fleurs</th>\n", " <td>0.206301</td>\n", " <td>0.172527</td>\n", " <td>0.161195</td>\n", " <td>0.156655</td>\n", " <td>0.160677</td>\n", " </tr>\n", " <tr>\n", " <th>it_minds14</th>\n", " <td>0.487493</td>\n", " <td>0.448874</td>\n", " <td>0.432679</td>\n", " <td>0.416035</td>\n", " <td>0.392705</td>\n", " </tr>\n", " <tr>\n", " <th>it_voxpopuli</th>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>pl_google_fleurs</th>\n", " <td>0.334936</td>\n", " <td>0.273025</td>\n", " <td>0.227662</td>\n", " <td>0.210962</td>\n", " <td>0.209027</td>\n", " </tr>\n", " <tr>\n", " <th>pl_minds14</th>\n", " <td>0.657194</td>\n", " <td>0.591588</td>\n", " <td>0.487344</td>\n", " <td>0.474013</td>\n", " <td>0.487891</td>\n", " </tr>\n", " <tr>\n", " <th>pl_voxpopuli</th>\n", " <td>0.203548</td>\n", " <td>0.158526</td>\n", " <td>0.126280</td>\n", " <td>0.110784</td>\n", " <td>0.117780</td>\n", " </tr>\n", " <tr>\n", " <th>es_google_fleurs</th>\n", " <td>0.187607</td>\n", " <td>0.159873</td>\n", " <td>0.147104</td>\n", " <td>0.155210</td>\n", " <td>0.154657</td>\n", " </tr>\n", " <tr>\n", " <th>es_minds14</th>\n", " <td>0.721295</td>\n", " <td>0.670363</td>\n", " <td>0.666278</td>\n", " <td>0.673058</td>\n", " <td>0.680341</td>\n", " </tr>\n", " <tr>\n", " <th>es_voxpopuli</th>\n", " <td>0.133805</td>\n", " <td>0.116222</td>\n", " <td>0.119882</td>\n", " <td>0.106610</td>\n", " <td>0.122036</td>\n", " </tr>\n", " <tr>\n", " <th>en_google_fleurs</th>\n", " <td>0.217843</td>\n", " <td>0.188810</td>\n", " <td>0.186407</td>\n", " <td>0.183656</td>\n", " <td>0.184568</td>\n", " </tr>\n", " <tr>\n", " <th>en_minds14</th>\n", " <td>0.562068</td>\n", " <td>0.566999</td>\n", " <td>0.580369</td>\n", " <td>0.583945</td>\n", " <td>0.578079</td>\n", " </tr>\n", " <tr>\n", " <th>en_voxpopuli</th>\n", " <td>0.224980</td>\n", " <td>0.203959</td>\n", " <td>0.210278</td>\n", " <td>0.322688</td>\n", " <td>0.280877</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tiny base small medium large-v2\n", "nl_google_fleurs 0.316124 0.230845 0.186936 0.170150 0.165057\n", "nl_minds14 0.463084 0.409993 0.360934 0.331613 0.324172\n", "nl_voxpopuli 0.215158 0.178716 0.132960 0.118042 0.139958\n", "fr_google_fleurs 0.264291 0.193436 0.177302 0.147464 0.141276\n", "fr_minds14 0.466860 0.468822 0.471754 0.444854 0.485090\n", "fr_voxpopuli 0.161386 0.131144 0.113097 0.099114 0.111776\n", "de_google_fleurs 0.316175 0.257454 0.234163 0.239750 0.236715\n", "de_minds14 0.435681 0.425712 0.412896 0.398617 0.398762\n", "de_voxpopuli 0.200245 0.155502 0.133251 0.116949 0.156371\n", "it_google_fleurs 0.206301 0.172527 0.161195 0.156655 0.160677\n", "it_minds14 0.487493 0.448874 0.432679 0.416035 0.392705\n", "it_voxpopuli -1.000000 -1.000000 -1.000000 -1.000000 -1.000000\n", "pl_google_fleurs 0.334936 0.273025 0.227662 0.210962 0.209027\n", "pl_minds14 0.657194 0.591588 0.487344 0.474013 0.487891\n", "pl_voxpopuli 0.203548 0.158526 0.126280 0.110784 0.117780\n", "es_google_fleurs 0.187607 0.159873 0.147104 0.155210 0.154657\n", "es_minds14 0.721295 0.670363 0.666278 0.673058 0.680341\n", "es_voxpopuli 0.133805 0.116222 0.119882 0.106610 0.122036\n", "en_google_fleurs 0.217843 0.188810 0.186407 0.183656 0.184568\n", "en_minds14 0.562068 0.566999 0.580369 0.583945 0.578079\n", "en_voxpopuli 0.224980 0.203959 0.210278 0.322688 0.280877" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(spacy_ner, columns=WHISPER_ASR_MODEL, index=FULL_DATASET_NAMES)\n", "# NER" ] }, { "cell_type": "code", "execution_count": 21, "id": "6466877e-e744-4cb1-8d4f-f818e1d3ee7d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>tiny</th>\n", " <th>base</th>\n", " <th>small</th>\n", " <th>medium</th>\n", " <th>large-v2</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>nl_google_fleurs</th>\n", " <td>0.582916</td>\n", " <td>0.427364</td>\n", " <td>0.279190</td>\n", " <td>0.229402</td>\n", " <td>0.212373</td>\n", " </tr>\n", " <tr>\n", " <th>nl_minds14</th>\n", " <td>0.888989</td>\n", " <td>0.702107</td>\n", " <td>0.511865</td>\n", " <td>0.440081</td>\n", " <td>0.415821</td>\n", " </tr>\n", " <tr>\n", " <th>nl_voxpopuli</th>\n", " <td>0.451950</td>\n", " <td>0.350228</td>\n", " <td>0.233061</td>\n", " <td>0.188461</td>\n", " <td>0.208664</td>\n", " </tr>\n", " <tr>\n", " <th>fr_google_fleurs</th>\n", " <td>0.468415</td>\n", " <td>0.338927</td>\n", " <td>0.260157</td>\n", " <td>0.207241</td>\n", " <td>0.194587</td>\n", " </tr>\n", " <tr>\n", " <th>fr_minds14</th>\n", " <td>0.700735</td>\n", " <td>0.619382</td>\n", " <td>0.567487</td>\n", " <td>0.513574</td>\n", " <td>0.552826</td>\n", " </tr>\n", " <tr>\n", " <th>fr_voxpopuli</th>\n", " <td>0.310661</td>\n", " <td>0.235596</td>\n", " <td>0.180943</td>\n", " <td>0.153288</td>\n", " <td>0.159867</td>\n", " </tr>\n", " <tr>\n", " <th>de_google_fleurs</th>\n", " <td>0.449640</td>\n", " <td>0.344001</td>\n", " <td>0.282088</td>\n", " <td>0.275634</td>\n", " <td>0.264093</td>\n", " </tr>\n", " <tr>\n", " <th>de_minds14</th>\n", " <td>0.608813</td>\n", " <td>0.529599</td>\n", " <td>0.472205</td>\n", " <td>0.443094</td>\n", " <td>0.441656</td>\n", " </tr>\n", " <tr>\n", " <th>de_voxpopuli</th>\n", " <td>0.347653</td>\n", " <td>0.248060</td>\n", " <td>0.198001</td>\n", " <td>0.168237</td>\n", " <td>0.205059</td>\n", " </tr>\n", " <tr>\n", " <th>it_google_fleurs</th>\n", " <td>0.364700</td>\n", " <td>0.269092</td>\n", " <td>0.218361</td>\n", " <td>0.189632</td>\n", " <td>0.189108</td>\n", " </tr>\n", " <tr>\n", " <th>it_minds14</th>\n", " <td>0.735663</td>\n", " <td>0.597724</td>\n", " <td>0.500377</td>\n", " <td>0.438344</td>\n", " <td>0.417785</td>\n", " </tr>\n", " <tr>\n", " <th>it_voxpopuli</th>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>pl_google_fleurs</th>\n", " <td>0.594285</td>\n", " <td>0.452570</td>\n", " <td>0.318702</td>\n", " <td>0.276475</td>\n", " <td>0.261194</td>\n", " </tr>\n", " <tr>\n", " <th>pl_minds14</th>\n", " <td>0.988993</td>\n", " <td>0.853431</td>\n", " <td>0.653693</td>\n", " <td>0.585884</td>\n", " <td>0.597468</td>\n", " </tr>\n", " <tr>\n", " <th>pl_voxpopuli</th>\n", " <td>0.374544</td>\n", " <td>0.277290</td>\n", " <td>0.198685</td>\n", " <td>0.164524</td>\n", " <td>0.161887</td>\n", " </tr>\n", " <tr>\n", " <th>es_google_fleurs</th>\n", " <td>0.284499</td>\n", " <td>0.224748</td>\n", " <td>0.187365</td>\n", " <td>0.189561</td>\n", " <td>0.184028</td>\n", " </tr>\n", " <tr>\n", " <th>es_minds14</th>\n", " <td>0.880992</td>\n", " <td>0.747677</td>\n", " <td>0.695294</td>\n", " <td>0.690749</td>\n", " <td>0.697884</td>\n", " </tr>\n", " <tr>\n", " <th>es_voxpopuli</th>\n", " <td>0.252463</td>\n", " <td>0.206225</td>\n", " <td>0.229706</td>\n", " <td>0.195846</td>\n", " <td>0.231587</td>\n", " </tr>\n", " <tr>\n", " <th>en_google_fleurs</th>\n", " <td>0.295853</td>\n", " <td>0.250928</td>\n", " <td>0.224483</td>\n", " <td>0.218855</td>\n", " <td>0.218479</td>\n", " </tr>\n", " <tr>\n", " <th>en_minds14</th>\n", " <td>0.634351</td>\n", " <td>0.623962</td>\n", " <td>0.626942</td>\n", " <td>0.626588</td>\n", " <td>0.620953</td>\n", " </tr>\n", " <tr>\n", " <th>en_voxpopuli</th>\n", " <td>0.345836</td>\n", " <td>0.319493</td>\n", " <td>0.319060</td>\n", " <td>0.466410</td>\n", " <td>0.408949</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tiny base small medium large-v2\n", "nl_google_fleurs 0.582916 0.427364 0.279190 0.229402 0.212373\n", "nl_minds14 0.888989 0.702107 0.511865 0.440081 0.415821\n", "nl_voxpopuli 0.451950 0.350228 0.233061 0.188461 0.208664\n", "fr_google_fleurs 0.468415 0.338927 0.260157 0.207241 0.194587\n", "fr_minds14 0.700735 0.619382 0.567487 0.513574 0.552826\n", "fr_voxpopuli 0.310661 0.235596 0.180943 0.153288 0.159867\n", "de_google_fleurs 0.449640 0.344001 0.282088 0.275634 0.264093\n", "de_minds14 0.608813 0.529599 0.472205 0.443094 0.441656\n", "de_voxpopuli 0.347653 0.248060 0.198001 0.168237 0.205059\n", "it_google_fleurs 0.364700 0.269092 0.218361 0.189632 0.189108\n", "it_minds14 0.735663 0.597724 0.500377 0.438344 0.417785\n", "it_voxpopuli -1.000000 -1.000000 -1.000000 -1.000000 -1.000000\n", "pl_google_fleurs 0.594285 0.452570 0.318702 0.276475 0.261194\n", "pl_minds14 0.988993 0.853431 0.653693 0.585884 0.597468\n", "pl_voxpopuli 0.374544 0.277290 0.198685 0.164524 0.161887\n", "es_google_fleurs 0.284499 0.224748 0.187365 0.189561 0.184028\n", "es_minds14 0.880992 0.747677 0.695294 0.690749 0.697884\n", "es_voxpopuli 0.252463 0.206225 0.229706 0.195846 0.231587\n", "en_google_fleurs 0.295853 0.250928 0.224483 0.218855 0.218479\n", "en_minds14 0.634351 0.623962 0.626942 0.626588 0.620953\n", "en_voxpopuli 0.345836 0.319493 0.319060 0.466410 0.408949" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(spacy_pos, columns=WHISPER_ASR_MODEL, index=FULL_DATASET_NAMES)\n", "# POS" ] }, { "cell_type": "code", "execution_count": 22, "id": "77567361-b730-49f0-ab68-19ad335df1b1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>tiny</th>\n", " <th>base</th>\n", " <th>small</th>\n", " <th>medium</th>\n", " <th>large-v2</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>nl_google_fleurs</th>\n", " <td>0.582916</td>\n", " <td>0.427364</td>\n", " <td>0.279190</td>\n", " <td>0.229402</td>\n", " <td>0.212373</td>\n", " </tr>\n", " <tr>\n", " <th>nl_minds14</th>\n", " <td>0.888989</td>\n", " <td>0.702107</td>\n", " <td>0.511865</td>\n", " <td>0.440081</td>\n", " <td>0.415821</td>\n", " </tr>\n", " <tr>\n", " <th>nl_voxpopuli</th>\n", " <td>0.451950</td>\n", " <td>0.350228</td>\n", " <td>0.233061</td>\n", " <td>0.188461</td>\n", " <td>0.208664</td>\n", " </tr>\n", " <tr>\n", " <th>fr_google_fleurs</th>\n", " <td>0.468415</td>\n", " <td>0.338927</td>\n", " <td>0.260157</td>\n", " <td>0.207241</td>\n", " <td>0.194587</td>\n", " </tr>\n", " <tr>\n", " <th>fr_minds14</th>\n", " <td>0.700735</td>\n", " <td>0.619382</td>\n", " <td>0.567487</td>\n", " <td>0.513574</td>\n", " <td>0.552826</td>\n", " </tr>\n", " <tr>\n", " <th>fr_voxpopuli</th>\n", " <td>0.310661</td>\n", " <td>0.235596</td>\n", " <td>0.180943</td>\n", " <td>0.153288</td>\n", " <td>0.159867</td>\n", " </tr>\n", " <tr>\n", " <th>de_google_fleurs</th>\n", " <td>0.449640</td>\n", " <td>0.344001</td>\n", " <td>0.282088</td>\n", " <td>0.275634</td>\n", " <td>0.264093</td>\n", " </tr>\n", " <tr>\n", " <th>de_minds14</th>\n", " <td>0.608813</td>\n", " <td>0.529599</td>\n", " <td>0.472205</td>\n", " <td>0.443094</td>\n", " <td>0.441656</td>\n", " </tr>\n", " <tr>\n", " <th>de_voxpopuli</th>\n", " <td>0.347653</td>\n", " <td>0.248060</td>\n", " <td>0.198001</td>\n", " <td>0.168237</td>\n", " <td>0.205059</td>\n", " </tr>\n", " <tr>\n", " <th>it_google_fleurs</th>\n", " <td>0.364700</td>\n", " <td>0.269092</td>\n", " <td>0.218361</td>\n", " <td>0.189632</td>\n", " <td>0.189108</td>\n", " </tr>\n", " <tr>\n", " <th>it_minds14</th>\n", " <td>0.735663</td>\n", " <td>0.597724</td>\n", " <td>0.500377</td>\n", " <td>0.438344</td>\n", " <td>0.417785</td>\n", " </tr>\n", " <tr>\n", " <th>it_voxpopuli</th>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>pl_google_fleurs</th>\n", " <td>0.594285</td>\n", " <td>0.452570</td>\n", " <td>0.318702</td>\n", " <td>0.276475</td>\n", " <td>0.261194</td>\n", " </tr>\n", " <tr>\n", " <th>pl_minds14</th>\n", " <td>0.988993</td>\n", " <td>0.853431</td>\n", " <td>0.653693</td>\n", " <td>0.585884</td>\n", " <td>0.597468</td>\n", " </tr>\n", " <tr>\n", " <th>pl_voxpopuli</th>\n", " <td>0.374544</td>\n", " <td>0.277290</td>\n", " <td>0.198685</td>\n", " <td>0.164524</td>\n", " <td>0.161887</td>\n", " </tr>\n", " <tr>\n", " <th>es_google_fleurs</th>\n", " <td>0.284499</td>\n", " <td>0.224748</td>\n", " <td>0.187365</td>\n", " <td>0.189561</td>\n", " <td>0.184028</td>\n", " </tr>\n", " <tr>\n", " <th>es_minds14</th>\n", " <td>0.880992</td>\n", " <td>0.747677</td>\n", " <td>0.695294</td>\n", " <td>0.690749</td>\n", " <td>0.697884</td>\n", " </tr>\n", " <tr>\n", " <th>es_voxpopuli</th>\n", " <td>0.252463</td>\n", " <td>0.206225</td>\n", " <td>0.229706</td>\n", " <td>0.195846</td>\n", " <td>0.231587</td>\n", " </tr>\n", " <tr>\n", " <th>en_google_fleurs</th>\n", " <td>0.295853</td>\n", " <td>0.250928</td>\n", " <td>0.224483</td>\n", " <td>0.218855</td>\n", " <td>0.218479</td>\n", " </tr>\n", " <tr>\n", " <th>en_minds14</th>\n", " <td>0.634351</td>\n", " <td>0.623962</td>\n", " <td>0.626942</td>\n", " <td>0.626588</td>\n", " <td>0.620953</td>\n", " </tr>\n", " <tr>\n", " <th>en_voxpopuli</th>\n", " <td>0.345836</td>\n", " <td>0.319493</td>\n", " <td>0.319060</td>\n", " <td>0.466410</td>\n", " <td>0.408949</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tiny base small medium large-v2\n", "nl_google_fleurs 0.582916 0.427364 0.279190 0.229402 0.212373\n", "nl_minds14 0.888989 0.702107 0.511865 0.440081 0.415821\n", "nl_voxpopuli 0.451950 0.350228 0.233061 0.188461 0.208664\n", "fr_google_fleurs 0.468415 0.338927 0.260157 0.207241 0.194587\n", "fr_minds14 0.700735 0.619382 0.567487 0.513574 0.552826\n", "fr_voxpopuli 0.310661 0.235596 0.180943 0.153288 0.159867\n", "de_google_fleurs 0.449640 0.344001 0.282088 0.275634 0.264093\n", "de_minds14 0.608813 0.529599 0.472205 0.443094 0.441656\n", "de_voxpopuli 0.347653 0.248060 0.198001 0.168237 0.205059\n", "it_google_fleurs 0.364700 0.269092 0.218361 0.189632 0.189108\n", "it_minds14 0.735663 0.597724 0.500377 0.438344 0.417785\n", "it_voxpopuli -1.000000 -1.000000 -1.000000 -1.000000 -1.000000\n", "pl_google_fleurs 0.594285 0.452570 0.318702 0.276475 0.261194\n", "pl_minds14 0.988993 0.853431 0.653693 0.585884 0.597468\n", "pl_voxpopuli 0.374544 0.277290 0.198685 0.164524 0.161887\n", "es_google_fleurs 0.284499 0.224748 0.187365 0.189561 0.184028\n", "es_minds14 0.880992 0.747677 0.695294 0.690749 0.697884\n", "es_voxpopuli 0.252463 0.206225 0.229706 0.195846 0.231587\n", "en_google_fleurs 0.295853 0.250928 0.224483 0.218855 0.218479\n", "en_minds14 0.634351 0.623962 0.626942 0.626588 0.620953\n", "en_voxpopuli 0.345836 0.319493 0.319060 0.466410 0.408949" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(spacy_dep, columns=WHISPER_ASR_MODEL, index=FULL_DATASET_NAMES)\n", "# DEP" ] }, { "cell_type": "code", "execution_count": 23, "id": "3dbfbb6e-c369-47fd-801c-6df211943dc1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>tiny</th>\n", " <th>base</th>\n", " <th>small</th>\n", " <th>medium</th>\n", " <th>large-v2</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>nl_google_fleurs</th>\n", " <td>0.708020</td>\n", " <td>0.535692</td>\n", " <td>0.365346</td>\n", " <td>0.296100</td>\n", " <td>0.261951</td>\n", " </tr>\n", " <tr>\n", " <th>nl_minds14</th>\n", " <td>0.897447</td>\n", " <td>0.714498</td>\n", " <td>0.503436</td>\n", " <td>0.419083</td>\n", " <td>0.389125</td>\n", " </tr>\n", " <tr>\n", " <th>nl_voxpopuli</th>\n", " <td>0.645715</td>\n", " <td>0.526939</td>\n", " <td>0.396940</td>\n", " <td>0.345034</td>\n", " <td>0.358023</td>\n", " </tr>\n", " <tr>\n", " <th>fr_google_fleurs</th>\n", " <td>0.600185</td>\n", " <td>0.470808</td>\n", " <td>0.378478</td>\n", " <td>0.324236</td>\n", " <td>0.309570</td>\n", " </tr>\n", " <tr>\n", " <th>fr_minds14</th>\n", " <td>0.805977</td>\n", " <td>0.700773</td>\n", " <td>0.642619</td>\n", " <td>0.583323</td>\n", " <td>0.616411</td>\n", " </tr>\n", " <tr>\n", " <th>fr_voxpopuli</th>\n", " <td>0.510623</td>\n", " <td>0.440340</td>\n", " <td>0.382961</td>\n", " <td>0.359633</td>\n", " <td>0.365811</td>\n", " </tr>\n", " <tr>\n", " <th>de_google_fleurs</th>\n", " <td>0.651989</td>\n", " <td>0.551766</td>\n", " <td>0.506944</td>\n", " <td>0.478476</td>\n", " <td>0.469045</td>\n", " </tr>\n", " <tr>\n", " <th>de_minds14</th>\n", " <td>0.659890</td>\n", " <td>0.554437</td>\n", " <td>0.474513</td>\n", " <td>0.429274</td>\n", " <td>0.425134</td>\n", " </tr>\n", " <tr>\n", " <th>de_voxpopuli</th>\n", " <td>0.645898</td>\n", " <td>0.558876</td>\n", " <td>0.518976</td>\n", " <td>0.488194</td>\n", " <td>0.525581</td>\n", " </tr>\n", " <tr>\n", " <th>it_google_fleurs</th>\n", " <td>0.465298</td>\n", " <td>0.355877</td>\n", " <td>0.287491</td>\n", " <td>0.254384</td>\n", " <td>0.251697</td>\n", " </tr>\n", " <tr>\n", " <th>it_minds14</th>\n", " <td>0.779429</td>\n", " <td>0.621546</td>\n", " <td>0.502670</td>\n", " <td>0.437805</td>\n", " <td>0.422781</td>\n", " </tr>\n", " <tr>\n", " <th>it_voxpopuli</th>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " <td>-1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>pl_google_fleurs</th>\n", " <td>0.705909</td>\n", " <td>0.553073</td>\n", " <td>0.384142</td>\n", " <td>0.318203</td>\n", " <td>0.298247</td>\n", " </tr>\n", " <tr>\n", " <th>pl_minds14</th>\n", " <td>1.009390</td>\n", " <td>0.860626</td>\n", " <td>0.633766</td>\n", " <td>0.572826</td>\n", " <td>0.563293</td>\n", " </tr>\n", " <tr>\n", " <th>pl_voxpopuli</th>\n", " <td>0.588464</td>\n", " <td>0.489265</td>\n", " <td>0.380883</td>\n", " <td>0.345623</td>\n", " <td>0.349896</td>\n", " </tr>\n", " <tr>\n", " <th>es_google_fleurs</th>\n", " <td>0.333658</td>\n", " <td>0.261352</td>\n", " <td>0.213950</td>\n", " <td>0.206351</td>\n", " <td>0.202078</td>\n", " </tr>\n", " <tr>\n", " <th>es_minds14</th>\n", " <td>0.884689</td>\n", " <td>0.740604</td>\n", " <td>0.664831</td>\n", " <td>0.656090</td>\n", " <td>0.650328</td>\n", " </tr>\n", " <tr>\n", " <th>es_voxpopuli</th>\n", " <td>0.347112</td>\n", " <td>0.294192</td>\n", " <td>0.333500</td>\n", " <td>0.295472</td>\n", " <td>0.353273</td>\n", " </tr>\n", " <tr>\n", " <th>en_google_fleurs</th>\n", " <td>0.348152</td>\n", " <td>0.307207</td>\n", " <td>0.278857</td>\n", " <td>0.268917</td>\n", " <td>0.270208</td>\n", " </tr>\n", " <tr>\n", " <th>en_minds14</th>\n", " <td>0.588375</td>\n", " <td>0.571845</td>\n", " <td>0.566381</td>\n", " <td>0.567538</td>\n", " <td>0.562651</td>\n", " </tr>\n", " <tr>\n", " <th>en_voxpopuli</th>\n", " <td>0.475612</td>\n", " <td>0.451586</td>\n", " <td>0.453132</td>\n", " <td>0.594546</td>\n", " <td>0.549755</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tiny base small medium large-v2\n", "nl_google_fleurs 0.708020 0.535692 0.365346 0.296100 0.261951\n", "nl_minds14 0.897447 0.714498 0.503436 0.419083 0.389125\n", "nl_voxpopuli 0.645715 0.526939 0.396940 0.345034 0.358023\n", "fr_google_fleurs 0.600185 0.470808 0.378478 0.324236 0.309570\n", "fr_minds14 0.805977 0.700773 0.642619 0.583323 0.616411\n", "fr_voxpopuli 0.510623 0.440340 0.382961 0.359633 0.365811\n", "de_google_fleurs 0.651989 0.551766 0.506944 0.478476 0.469045\n", "de_minds14 0.659890 0.554437 0.474513 0.429274 0.425134\n", "de_voxpopuli 0.645898 0.558876 0.518976 0.488194 0.525581\n", "it_google_fleurs 0.465298 0.355877 0.287491 0.254384 0.251697\n", "it_minds14 0.779429 0.621546 0.502670 0.437805 0.422781\n", "it_voxpopuli -1.000000 -1.000000 -1.000000 -1.000000 -1.000000\n", "pl_google_fleurs 0.705909 0.553073 0.384142 0.318203 0.298247\n", "pl_minds14 1.009390 0.860626 0.633766 0.572826 0.563293\n", "pl_voxpopuli 0.588464 0.489265 0.380883 0.345623 0.349896\n", "es_google_fleurs 0.333658 0.261352 0.213950 0.206351 0.202078\n", "es_minds14 0.884689 0.740604 0.664831 0.656090 0.650328\n", "es_voxpopuli 0.347112 0.294192 0.333500 0.295472 0.353273\n", "en_google_fleurs 0.348152 0.307207 0.278857 0.268917 0.270208\n", "en_minds14 0.588375 0.571845 0.566381 0.567538 0.562651\n", "en_voxpopuli 0.475612 0.451586 0.453132 0.594546 0.549755" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(word_wer_classic_metrics, columns=WHISPER_ASR_MODEL, index=FULL_DATASET_NAMES)\n", "# word_wer_classic_metrics" ] }, { "cell_type": "code", "execution_count": null, "id": "77a6e273-1f5e-4a2b-9568-66e53ba99c7b", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "629318e6-8c00-413c-99d4-2b7ff559ac3f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 5 }